Step |
Hyp |
Ref |
Expression |
1 |
|
plydiv.pl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
2 |
|
plydiv.tm |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) |
3 |
|
plydiv.rc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ≠ 0 ) ) → ( 1 / 𝑥 ) ∈ 𝑆 ) |
4 |
|
plydiv.m1 |
⊢ ( 𝜑 → - 1 ∈ 𝑆 ) |
5 |
|
plydiv.f |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
6 |
|
plydiv.g |
⊢ ( 𝜑 → 𝐺 ∈ ( Poly ‘ 𝑆 ) ) |
7 |
|
plydiv.z |
⊢ ( 𝜑 → 𝐺 ≠ 0𝑝 ) |
8 |
|
plydiv.r |
⊢ 𝑅 = ( 𝐹 ∘f − ( 𝐺 ∘f · 𝑞 ) ) |
9 |
|
plydiv.0 |
⊢ ( 𝜑 → ( 𝐹 = 0𝑝 ∨ ( ( deg ‘ 𝐹 ) − ( deg ‘ 𝐺 ) ) < 0 ) ) |
10 |
|
plybss |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝑆 ⊆ ℂ ) |
11 |
|
ply0 |
⊢ ( 𝑆 ⊆ ℂ → 0𝑝 ∈ ( Poly ‘ 𝑆 ) ) |
12 |
5 10 11
|
3syl |
⊢ ( 𝜑 → 0𝑝 ∈ ( Poly ‘ 𝑆 ) ) |
13 |
|
cnex |
⊢ ℂ ∈ V |
14 |
13
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
15 |
|
plyf |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 : ℂ ⟶ ℂ ) |
16 |
|
ffn |
⊢ ( 𝐹 : ℂ ⟶ ℂ → 𝐹 Fn ℂ ) |
17 |
5 15 16
|
3syl |
⊢ ( 𝜑 → 𝐹 Fn ℂ ) |
18 |
|
plyf |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → 𝐺 : ℂ ⟶ ℂ ) |
19 |
|
ffn |
⊢ ( 𝐺 : ℂ ⟶ ℂ → 𝐺 Fn ℂ ) |
20 |
6 18 19
|
3syl |
⊢ ( 𝜑 → 𝐺 Fn ℂ ) |
21 |
|
plyf |
⊢ ( 0𝑝 ∈ ( Poly ‘ 𝑆 ) → 0𝑝 : ℂ ⟶ ℂ ) |
22 |
|
ffn |
⊢ ( 0𝑝 : ℂ ⟶ ℂ → 0𝑝 Fn ℂ ) |
23 |
12 21 22
|
3syl |
⊢ ( 𝜑 → 0𝑝 Fn ℂ ) |
24 |
|
inidm |
⊢ ( ℂ ∩ ℂ ) = ℂ |
25 |
20 23 14 14 24
|
offn |
⊢ ( 𝜑 → ( 𝐺 ∘f · 0𝑝 ) Fn ℂ ) |
26 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
27 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) |
28 |
|
0pval |
⊢ ( 𝑧 ∈ ℂ → ( 0𝑝 ‘ 𝑧 ) = 0 ) |
29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 0𝑝 ‘ 𝑧 ) = 0 ) |
30 |
20 23 14 14 24 27 29
|
ofval |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( ( 𝐺 ∘f · 0𝑝 ) ‘ 𝑧 ) = ( ( 𝐺 ‘ 𝑧 ) · 0 ) ) |
31 |
6 18
|
syl |
⊢ ( 𝜑 → 𝐺 : ℂ ⟶ ℂ ) |
32 |
31
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
33 |
32
|
mul01d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( ( 𝐺 ‘ 𝑧 ) · 0 ) = 0 ) |
34 |
30 33
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( ( 𝐺 ∘f · 0𝑝 ) ‘ 𝑧 ) = 0 ) |
35 |
5 15
|
syl |
⊢ ( 𝜑 → 𝐹 : ℂ ⟶ ℂ ) |
36 |
35
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
37 |
36
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ℂ ) → ( ( 𝐹 ‘ 𝑧 ) − 0 ) = ( 𝐹 ‘ 𝑧 ) ) |
38 |
14 17 25 17 26 34 37
|
offveq |
⊢ ( 𝜑 → ( 𝐹 ∘f − ( 𝐺 ∘f · 0𝑝 ) ) = 𝐹 ) |
39 |
38
|
eqeq1d |
⊢ ( 𝜑 → ( ( 𝐹 ∘f − ( 𝐺 ∘f · 0𝑝 ) ) = 0𝑝 ↔ 𝐹 = 0𝑝 ) ) |
40 |
38
|
fveq2d |
⊢ ( 𝜑 → ( deg ‘ ( 𝐹 ∘f − ( 𝐺 ∘f · 0𝑝 ) ) ) = ( deg ‘ 𝐹 ) ) |
41 |
|
dgrcl |
⊢ ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐺 ) ∈ ℕ0 ) |
42 |
6 41
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝐺 ) ∈ ℕ0 ) |
43 |
42
|
nn0red |
⊢ ( 𝜑 → ( deg ‘ 𝐺 ) ∈ ℝ ) |
44 |
43
|
recnd |
⊢ ( 𝜑 → ( deg ‘ 𝐺 ) ∈ ℂ ) |
45 |
44
|
addid2d |
⊢ ( 𝜑 → ( 0 + ( deg ‘ 𝐺 ) ) = ( deg ‘ 𝐺 ) ) |
46 |
45
|
eqcomd |
⊢ ( 𝜑 → ( deg ‘ 𝐺 ) = ( 0 + ( deg ‘ 𝐺 ) ) ) |
47 |
40 46
|
breq12d |
⊢ ( 𝜑 → ( ( deg ‘ ( 𝐹 ∘f − ( 𝐺 ∘f · 0𝑝 ) ) ) < ( deg ‘ 𝐺 ) ↔ ( deg ‘ 𝐹 ) < ( 0 + ( deg ‘ 𝐺 ) ) ) ) |
48 |
|
dgrcl |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
49 |
5 48
|
syl |
⊢ ( 𝜑 → ( deg ‘ 𝐹 ) ∈ ℕ0 ) |
50 |
49
|
nn0red |
⊢ ( 𝜑 → ( deg ‘ 𝐹 ) ∈ ℝ ) |
51 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
52 |
50 43 51
|
ltsubaddd |
⊢ ( 𝜑 → ( ( ( deg ‘ 𝐹 ) − ( deg ‘ 𝐺 ) ) < 0 ↔ ( deg ‘ 𝐹 ) < ( 0 + ( deg ‘ 𝐺 ) ) ) ) |
53 |
47 52
|
bitr4d |
⊢ ( 𝜑 → ( ( deg ‘ ( 𝐹 ∘f − ( 𝐺 ∘f · 0𝑝 ) ) ) < ( deg ‘ 𝐺 ) ↔ ( ( deg ‘ 𝐹 ) − ( deg ‘ 𝐺 ) ) < 0 ) ) |
54 |
39 53
|
orbi12d |
⊢ ( 𝜑 → ( ( ( 𝐹 ∘f − ( 𝐺 ∘f · 0𝑝 ) ) = 0𝑝 ∨ ( deg ‘ ( 𝐹 ∘f − ( 𝐺 ∘f · 0𝑝 ) ) ) < ( deg ‘ 𝐺 ) ) ↔ ( 𝐹 = 0𝑝 ∨ ( ( deg ‘ 𝐹 ) − ( deg ‘ 𝐺 ) ) < 0 ) ) ) |
55 |
9 54
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐹 ∘f − ( 𝐺 ∘f · 0𝑝 ) ) = 0𝑝 ∨ ( deg ‘ ( 𝐹 ∘f − ( 𝐺 ∘f · 0𝑝 ) ) ) < ( deg ‘ 𝐺 ) ) ) |
56 |
|
oveq2 |
⊢ ( 𝑞 = 0𝑝 → ( 𝐺 ∘f · 𝑞 ) = ( 𝐺 ∘f · 0𝑝 ) ) |
57 |
56
|
oveq2d |
⊢ ( 𝑞 = 0𝑝 → ( 𝐹 ∘f − ( 𝐺 ∘f · 𝑞 ) ) = ( 𝐹 ∘f − ( 𝐺 ∘f · 0𝑝 ) ) ) |
58 |
8 57
|
syl5eq |
⊢ ( 𝑞 = 0𝑝 → 𝑅 = ( 𝐹 ∘f − ( 𝐺 ∘f · 0𝑝 ) ) ) |
59 |
58
|
eqeq1d |
⊢ ( 𝑞 = 0𝑝 → ( 𝑅 = 0𝑝 ↔ ( 𝐹 ∘f − ( 𝐺 ∘f · 0𝑝 ) ) = 0𝑝 ) ) |
60 |
58
|
fveq2d |
⊢ ( 𝑞 = 0𝑝 → ( deg ‘ 𝑅 ) = ( deg ‘ ( 𝐹 ∘f − ( 𝐺 ∘f · 0𝑝 ) ) ) ) |
61 |
60
|
breq1d |
⊢ ( 𝑞 = 0𝑝 → ( ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ↔ ( deg ‘ ( 𝐹 ∘f − ( 𝐺 ∘f · 0𝑝 ) ) ) < ( deg ‘ 𝐺 ) ) ) |
62 |
59 61
|
orbi12d |
⊢ ( 𝑞 = 0𝑝 → ( ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ↔ ( ( 𝐹 ∘f − ( 𝐺 ∘f · 0𝑝 ) ) = 0𝑝 ∨ ( deg ‘ ( 𝐹 ∘f − ( 𝐺 ∘f · 0𝑝 ) ) ) < ( deg ‘ 𝐺 ) ) ) ) |
63 |
62
|
rspcev |
⊢ ( ( 0𝑝 ∈ ( Poly ‘ 𝑆 ) ∧ ( ( 𝐹 ∘f − ( 𝐺 ∘f · 0𝑝 ) ) = 0𝑝 ∨ ( deg ‘ ( 𝐹 ∘f − ( 𝐺 ∘f · 0𝑝 ) ) ) < ( deg ‘ 𝐺 ) ) ) → ∃ 𝑞 ∈ ( Poly ‘ 𝑆 ) ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ) |
64 |
12 55 63
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑞 ∈ ( Poly ‘ 𝑆 ) ( 𝑅 = 0𝑝 ∨ ( deg ‘ 𝑅 ) < ( deg ‘ 𝐺 ) ) ) |