| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plydiv.pl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 2 |  | plydiv.tm | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  ·  𝑦 )  ∈  𝑆 ) | 
						
							| 3 |  | plydiv.rc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑥  ≠  0 ) )  →  ( 1  /  𝑥 )  ∈  𝑆 ) | 
						
							| 4 |  | plydiv.m1 | ⊢ ( 𝜑  →  - 1  ∈  𝑆 ) | 
						
							| 5 |  | plydiv.f | ⊢ ( 𝜑  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 6 |  | plydiv.g | ⊢ ( 𝜑  →  𝐺  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 7 |  | plydiv.z | ⊢ ( 𝜑  →  𝐺  ≠  0𝑝 ) | 
						
							| 8 |  | plydiv.r | ⊢ 𝑅  =  ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  𝑞 ) ) | 
						
							| 9 |  | plydiv.d | ⊢ ( 𝜑  →  𝐷  ∈  ℕ0 ) | 
						
							| 10 |  | plydiv.e | ⊢ ( 𝜑  →  ( 𝑀  −  𝑁 )  =  𝐷 ) | 
						
							| 11 |  | plydiv.fz | ⊢ ( 𝜑  →  𝐹  ≠  0𝑝 ) | 
						
							| 12 |  | plydiv.u | ⊢ 𝑈  =  ( 𝑓  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) ) | 
						
							| 13 |  | plydiv.h | ⊢ 𝐻  =  ( 𝑧  ∈  ℂ  ↦  ( ( ( 𝐴 ‘ 𝑀 )  /  ( 𝐵 ‘ 𝑁 ) )  ·  ( 𝑧 ↑ 𝐷 ) ) ) | 
						
							| 14 |  | plydiv.al | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  ( Poly ‘ 𝑆 ) ( ( 𝑓  =  0𝑝  ∨  ( ( deg ‘ 𝑓 )  −  𝑁 )  <  𝐷 )  →  ∃ 𝑝  ∈  ( Poly ‘ 𝑆 ) ( 𝑈  =  0𝑝  ∨  ( deg ‘ 𝑈 )  <  𝑁 ) ) ) | 
						
							| 15 |  | plydiv.a | ⊢ 𝐴  =  ( coeff ‘ 𝐹 ) | 
						
							| 16 |  | plydiv.b | ⊢ 𝐵  =  ( coeff ‘ 𝐺 ) | 
						
							| 17 |  | plydiv.m | ⊢ 𝑀  =  ( deg ‘ 𝐹 ) | 
						
							| 18 |  | plydiv.n | ⊢ 𝑁  =  ( deg ‘ 𝐺 ) | 
						
							| 19 |  | plybss | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝑆  ⊆  ℂ ) | 
						
							| 20 | 5 19 | syl | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 21 | 1 2 3 4 | plydivlem1 | ⊢ ( 𝜑  →  0  ∈  𝑆 ) | 
						
							| 22 | 15 | coef2 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  0  ∈  𝑆 )  →  𝐴 : ℕ0 ⟶ 𝑆 ) | 
						
							| 23 | 5 21 22 | syl2anc | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ 𝑆 ) | 
						
							| 24 |  | dgrcl | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( deg ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 25 | 5 24 | syl | ⊢ ( 𝜑  →  ( deg ‘ 𝐹 )  ∈  ℕ0 ) | 
						
							| 26 | 17 25 | eqeltrid | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 27 | 23 26 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑀 )  ∈  𝑆 ) | 
						
							| 28 | 20 27 | sseldd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑀 )  ∈  ℂ ) | 
						
							| 29 | 16 | coef2 | ⊢ ( ( 𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  0  ∈  𝑆 )  →  𝐵 : ℕ0 ⟶ 𝑆 ) | 
						
							| 30 | 6 21 29 | syl2anc | ⊢ ( 𝜑  →  𝐵 : ℕ0 ⟶ 𝑆 ) | 
						
							| 31 |  | dgrcl | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  ( deg ‘ 𝐺 )  ∈  ℕ0 ) | 
						
							| 32 | 6 31 | syl | ⊢ ( 𝜑  →  ( deg ‘ 𝐺 )  ∈  ℕ0 ) | 
						
							| 33 | 18 32 | eqeltrid | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 34 | 30 33 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑁 )  ∈  𝑆 ) | 
						
							| 35 | 20 34 | sseldd | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 36 | 18 16 | dgreq0 | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  ( 𝐺  =  0𝑝  ↔  ( 𝐵 ‘ 𝑁 )  =  0 ) ) | 
						
							| 37 | 6 36 | syl | ⊢ ( 𝜑  →  ( 𝐺  =  0𝑝  ↔  ( 𝐵 ‘ 𝑁 )  =  0 ) ) | 
						
							| 38 | 37 | necon3bid | ⊢ ( 𝜑  →  ( 𝐺  ≠  0𝑝  ↔  ( 𝐵 ‘ 𝑁 )  ≠  0 ) ) | 
						
							| 39 | 7 38 | mpbid | ⊢ ( 𝜑  →  ( 𝐵 ‘ 𝑁 )  ≠  0 ) | 
						
							| 40 | 28 35 39 | divrecd | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑀 )  /  ( 𝐵 ‘ 𝑁 ) )  =  ( ( 𝐴 ‘ 𝑀 )  ·  ( 1  /  ( 𝐵 ‘ 𝑁 ) ) ) ) | 
						
							| 41 |  | fvex | ⊢ ( 𝐵 ‘ 𝑁 )  ∈  V | 
						
							| 42 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝐵 ‘ 𝑁 )  →  ( 𝑥  ∈  𝑆  ↔  ( 𝐵 ‘ 𝑁 )  ∈  𝑆 ) ) | 
						
							| 43 |  | neeq1 | ⊢ ( 𝑥  =  ( 𝐵 ‘ 𝑁 )  →  ( 𝑥  ≠  0  ↔  ( 𝐵 ‘ 𝑁 )  ≠  0 ) ) | 
						
							| 44 | 42 43 | anbi12d | ⊢ ( 𝑥  =  ( 𝐵 ‘ 𝑁 )  →  ( ( 𝑥  ∈  𝑆  ∧  𝑥  ≠  0 )  ↔  ( ( 𝐵 ‘ 𝑁 )  ∈  𝑆  ∧  ( 𝐵 ‘ 𝑁 )  ≠  0 ) ) ) | 
						
							| 45 | 44 | anbi2d | ⊢ ( 𝑥  =  ( 𝐵 ‘ 𝑁 )  →  ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑥  ≠  0 ) )  ↔  ( 𝜑  ∧  ( ( 𝐵 ‘ 𝑁 )  ∈  𝑆  ∧  ( 𝐵 ‘ 𝑁 )  ≠  0 ) ) ) ) | 
						
							| 46 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝐵 ‘ 𝑁 )  →  ( 1  /  𝑥 )  =  ( 1  /  ( 𝐵 ‘ 𝑁 ) ) ) | 
						
							| 47 | 46 | eleq1d | ⊢ ( 𝑥  =  ( 𝐵 ‘ 𝑁 )  →  ( ( 1  /  𝑥 )  ∈  𝑆  ↔  ( 1  /  ( 𝐵 ‘ 𝑁 ) )  ∈  𝑆 ) ) | 
						
							| 48 | 45 47 | imbi12d | ⊢ ( 𝑥  =  ( 𝐵 ‘ 𝑁 )  →  ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑥  ≠  0 ) )  →  ( 1  /  𝑥 )  ∈  𝑆 )  ↔  ( ( 𝜑  ∧  ( ( 𝐵 ‘ 𝑁 )  ∈  𝑆  ∧  ( 𝐵 ‘ 𝑁 )  ≠  0 ) )  →  ( 1  /  ( 𝐵 ‘ 𝑁 ) )  ∈  𝑆 ) ) ) | 
						
							| 49 | 41 48 3 | vtocl | ⊢ ( ( 𝜑  ∧  ( ( 𝐵 ‘ 𝑁 )  ∈  𝑆  ∧  ( 𝐵 ‘ 𝑁 )  ≠  0 ) )  →  ( 1  /  ( 𝐵 ‘ 𝑁 ) )  ∈  𝑆 ) | 
						
							| 50 | 49 | ex | ⊢ ( 𝜑  →  ( ( ( 𝐵 ‘ 𝑁 )  ∈  𝑆  ∧  ( 𝐵 ‘ 𝑁 )  ≠  0 )  →  ( 1  /  ( 𝐵 ‘ 𝑁 ) )  ∈  𝑆 ) ) | 
						
							| 51 | 34 39 50 | mp2and | ⊢ ( 𝜑  →  ( 1  /  ( 𝐵 ‘ 𝑁 ) )  ∈  𝑆 ) | 
						
							| 52 | 2 27 51 | caovcld | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑀 )  ·  ( 1  /  ( 𝐵 ‘ 𝑁 ) ) )  ∈  𝑆 ) | 
						
							| 53 | 40 52 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑀 )  /  ( 𝐵 ‘ 𝑁 ) )  ∈  𝑆 ) | 
						
							| 54 | 13 | ply1term | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  ( ( 𝐴 ‘ 𝑀 )  /  ( 𝐵 ‘ 𝑁 ) )  ∈  𝑆  ∧  𝐷  ∈  ℕ0 )  →  𝐻  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 55 | 20 53 9 54 | syl3anc | ⊢ ( 𝜑  →  𝐻  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  𝐻  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 57 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  𝑝  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 58 | 1 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 59 | 56 57 58 | plyadd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝐻  ∘f   +  𝑝 )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 60 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 61 | 60 | a1i | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  ℂ  ∈  V ) | 
						
							| 62 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 63 |  | plyf | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 64 | 62 63 | syl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 65 |  | mulcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  ·  𝑦 )  ∈  ℂ ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ ) )  →  ( 𝑥  ·  𝑦 )  ∈  ℂ ) | 
						
							| 67 |  | plyf | ⊢ ( 𝐻  ∈  ( Poly ‘ 𝑆 )  →  𝐻 : ℂ ⟶ ℂ ) | 
						
							| 68 | 56 67 | syl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  𝐻 : ℂ ⟶ ℂ ) | 
						
							| 69 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  𝐺  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 70 |  | plyf | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  𝐺 : ℂ ⟶ ℂ ) | 
						
							| 71 | 69 70 | syl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  𝐺 : ℂ ⟶ ℂ ) | 
						
							| 72 |  | inidm | ⊢ ( ℂ  ∩  ℂ )  =  ℂ | 
						
							| 73 | 66 68 71 61 61 72 | off | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝐻  ∘f   ·  𝐺 ) : ℂ ⟶ ℂ ) | 
						
							| 74 |  | plyf | ⊢ ( 𝑝  ∈  ( Poly ‘ 𝑆 )  →  𝑝 : ℂ ⟶ ℂ ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  𝑝 : ℂ ⟶ ℂ ) | 
						
							| 76 | 66 71 75 61 61 72 | off | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝐺  ∘f   ·  𝑝 ) : ℂ ⟶ ℂ ) | 
						
							| 77 |  | subsub4 | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑥  −  𝑦 )  −  𝑧 )  =  ( 𝑥  −  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 78 | 77 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ ) )  →  ( ( 𝑥  −  𝑦 )  −  𝑧 )  =  ( 𝑥  −  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 79 | 61 64 73 76 78 | caofass | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) )  =  ( 𝐹  ∘f   −  ( ( 𝐻  ∘f   ·  𝐺 )  ∘f   +  ( 𝐺  ∘f   ·  𝑝 ) ) ) ) | 
						
							| 80 |  | mulcom | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  ·  𝑦 )  =  ( 𝑦  ·  𝑥 ) ) | 
						
							| 81 | 80 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ ) )  →  ( 𝑥  ·  𝑦 )  =  ( 𝑦  ·  𝑥 ) ) | 
						
							| 82 | 61 68 71 81 | caofcom | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝐻  ∘f   ·  𝐺 )  =  ( 𝐺  ∘f   ·  𝐻 ) ) | 
						
							| 83 | 82 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  ( ( 𝐻  ∘f   ·  𝐺 )  ∘f   +  ( 𝐺  ∘f   ·  𝑝 ) )  =  ( ( 𝐺  ∘f   ·  𝐻 )  ∘f   +  ( 𝐺  ∘f   ·  𝑝 ) ) ) | 
						
							| 84 |  | adddi | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( 𝑥  ·  ( 𝑦  +  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  +  ( 𝑥  ·  𝑧 ) ) ) | 
						
							| 85 | 84 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ  ∧  𝑧  ∈  ℂ ) )  →  ( 𝑥  ·  ( 𝑦  +  𝑧 ) )  =  ( ( 𝑥  ·  𝑦 )  +  ( 𝑥  ·  𝑧 ) ) ) | 
						
							| 86 | 61 71 68 75 85 | caofdi | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝐺  ∘f   ·  ( 𝐻  ∘f   +  𝑝 ) )  =  ( ( 𝐺  ∘f   ·  𝐻 )  ∘f   +  ( 𝐺  ∘f   ·  𝑝 ) ) ) | 
						
							| 87 | 83 86 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  ( ( 𝐻  ∘f   ·  𝐺 )  ∘f   +  ( 𝐺  ∘f   ·  𝑝 ) )  =  ( 𝐺  ∘f   ·  ( 𝐻  ∘f   +  𝑝 ) ) ) | 
						
							| 88 | 87 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝐹  ∘f   −  ( ( 𝐻  ∘f   ·  𝐺 )  ∘f   +  ( 𝐺  ∘f   ·  𝑝 ) ) )  =  ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐻  ∘f   +  𝑝 ) ) ) ) | 
						
							| 89 | 79 88 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) )  =  ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐻  ∘f   +  𝑝 ) ) ) ) | 
						
							| 90 | 89 | eqeq1d | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  ( ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) )  =  0𝑝  ↔  ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐻  ∘f   +  𝑝 ) ) )  =  0𝑝 ) ) | 
						
							| 91 | 89 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  ( deg ‘ ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) ) )  =  ( deg ‘ ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐻  ∘f   +  𝑝 ) ) ) ) ) | 
						
							| 92 | 91 | breq1d | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  ( ( deg ‘ ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) ) )  <  𝑁  ↔  ( deg ‘ ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐻  ∘f   +  𝑝 ) ) ) )  <  𝑁 ) ) | 
						
							| 93 | 90 92 | orbi12d | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  →  ( ( ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) )  =  0𝑝  ∨  ( deg ‘ ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) ) )  <  𝑁 )  ↔  ( ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐻  ∘f   +  𝑝 ) ) )  =  0𝑝  ∨  ( deg ‘ ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐻  ∘f   +  𝑝 ) ) ) )  <  𝑁 ) ) ) | 
						
							| 94 | 93 | biimpa | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) )  =  0𝑝  ∨  ( deg ‘ ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) ) )  <  𝑁 ) )  →  ( ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐻  ∘f   +  𝑝 ) ) )  =  0𝑝  ∨  ( deg ‘ ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐻  ∘f   +  𝑝 ) ) ) )  <  𝑁 ) ) | 
						
							| 95 |  | oveq2 | ⊢ ( 𝑞  =  ( 𝐻  ∘f   +  𝑝 )  →  ( 𝐺  ∘f   ·  𝑞 )  =  ( 𝐺  ∘f   ·  ( 𝐻  ∘f   +  𝑝 ) ) ) | 
						
							| 96 | 95 | oveq2d | ⊢ ( 𝑞  =  ( 𝐻  ∘f   +  𝑝 )  →  ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  𝑞 ) )  =  ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐻  ∘f   +  𝑝 ) ) ) ) | 
						
							| 97 | 8 96 | eqtrid | ⊢ ( 𝑞  =  ( 𝐻  ∘f   +  𝑝 )  →  𝑅  =  ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐻  ∘f   +  𝑝 ) ) ) ) | 
						
							| 98 | 97 | eqeq1d | ⊢ ( 𝑞  =  ( 𝐻  ∘f   +  𝑝 )  →  ( 𝑅  =  0𝑝  ↔  ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐻  ∘f   +  𝑝 ) ) )  =  0𝑝 ) ) | 
						
							| 99 | 97 | fveq2d | ⊢ ( 𝑞  =  ( 𝐻  ∘f   +  𝑝 )  →  ( deg ‘ 𝑅 )  =  ( deg ‘ ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐻  ∘f   +  𝑝 ) ) ) ) ) | 
						
							| 100 | 99 | breq1d | ⊢ ( 𝑞  =  ( 𝐻  ∘f   +  𝑝 )  →  ( ( deg ‘ 𝑅 )  <  𝑁  ↔  ( deg ‘ ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐻  ∘f   +  𝑝 ) ) ) )  <  𝑁 ) ) | 
						
							| 101 | 98 100 | orbi12d | ⊢ ( 𝑞  =  ( 𝐻  ∘f   +  𝑝 )  →  ( ( 𝑅  =  0𝑝  ∨  ( deg ‘ 𝑅 )  <  𝑁 )  ↔  ( ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐻  ∘f   +  𝑝 ) ) )  =  0𝑝  ∨  ( deg ‘ ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐻  ∘f   +  𝑝 ) ) ) )  <  𝑁 ) ) ) | 
						
							| 102 | 101 | rspcev | ⊢ ( ( ( 𝐻  ∘f   +  𝑝 )  ∈  ( Poly ‘ 𝑆 )  ∧  ( ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐻  ∘f   +  𝑝 ) ) )  =  0𝑝  ∨  ( deg ‘ ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐻  ∘f   +  𝑝 ) ) ) )  <  𝑁 ) )  →  ∃ 𝑞  ∈  ( Poly ‘ 𝑆 ) ( 𝑅  =  0𝑝  ∨  ( deg ‘ 𝑅 )  <  𝑁 ) ) | 
						
							| 103 | 59 94 102 | syl2an2r | ⊢ ( ( ( 𝜑  ∧  𝑝  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) )  =  0𝑝  ∨  ( deg ‘ ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) ) )  <  𝑁 ) )  →  ∃ 𝑞  ∈  ( Poly ‘ 𝑆 ) ( 𝑅  =  0𝑝  ∨  ( deg ‘ 𝑅 )  <  𝑁 ) ) | 
						
							| 104 | 55 6 1 2 | plymul | ⊢ ( 𝜑  →  ( 𝐻  ∘f   ·  𝐺 )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 105 |  | eqid | ⊢ ( deg ‘ ( 𝐻  ∘f   ·  𝐺 ) )  =  ( deg ‘ ( 𝐻  ∘f   ·  𝐺 ) ) | 
						
							| 106 | 17 105 | dgrsub | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝐻  ∘f   ·  𝐺 )  ∈  ( Poly ‘ 𝑆 ) )  →  ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  ≤  if ( 𝑀  ≤  ( deg ‘ ( 𝐻  ∘f   ·  𝐺 ) ) ,  ( deg ‘ ( 𝐻  ∘f   ·  𝐺 ) ) ,  𝑀 ) ) | 
						
							| 107 | 5 104 106 | syl2anc | ⊢ ( 𝜑  →  ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  ≤  if ( 𝑀  ≤  ( deg ‘ ( 𝐻  ∘f   ·  𝐺 ) ) ,  ( deg ‘ ( 𝐻  ∘f   ·  𝐺 ) ) ,  𝑀 ) ) | 
						
							| 108 | 17 15 | dgreq0 | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( 𝐹  =  0𝑝  ↔  ( 𝐴 ‘ 𝑀 )  =  0 ) ) | 
						
							| 109 | 5 108 | syl | ⊢ ( 𝜑  →  ( 𝐹  =  0𝑝  ↔  ( 𝐴 ‘ 𝑀 )  =  0 ) ) | 
						
							| 110 | 109 | necon3bid | ⊢ ( 𝜑  →  ( 𝐹  ≠  0𝑝  ↔  ( 𝐴 ‘ 𝑀 )  ≠  0 ) ) | 
						
							| 111 | 11 110 | mpbid | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑀 )  ≠  0 ) | 
						
							| 112 | 28 35 111 39 | divne0d | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑀 )  /  ( 𝐵 ‘ 𝑁 ) )  ≠  0 ) | 
						
							| 113 | 20 53 | sseldd | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑀 )  /  ( 𝐵 ‘ 𝑁 ) )  ∈  ℂ ) | 
						
							| 114 | 13 | coe1term | ⊢ ( ( ( ( 𝐴 ‘ 𝑀 )  /  ( 𝐵 ‘ 𝑁 ) )  ∈  ℂ  ∧  𝐷  ∈  ℕ0  ∧  𝐷  ∈  ℕ0 )  →  ( ( coeff ‘ 𝐻 ) ‘ 𝐷 )  =  if ( 𝐷  =  𝐷 ,  ( ( 𝐴 ‘ 𝑀 )  /  ( 𝐵 ‘ 𝑁 ) ) ,  0 ) ) | 
						
							| 115 | 113 9 9 114 | syl3anc | ⊢ ( 𝜑  →  ( ( coeff ‘ 𝐻 ) ‘ 𝐷 )  =  if ( 𝐷  =  𝐷 ,  ( ( 𝐴 ‘ 𝑀 )  /  ( 𝐵 ‘ 𝑁 ) ) ,  0 ) ) | 
						
							| 116 |  | eqid | ⊢ 𝐷  =  𝐷 | 
						
							| 117 | 116 | iftruei | ⊢ if ( 𝐷  =  𝐷 ,  ( ( 𝐴 ‘ 𝑀 )  /  ( 𝐵 ‘ 𝑁 ) ) ,  0 )  =  ( ( 𝐴 ‘ 𝑀 )  /  ( 𝐵 ‘ 𝑁 ) ) | 
						
							| 118 | 115 117 | eqtrdi | ⊢ ( 𝜑  →  ( ( coeff ‘ 𝐻 ) ‘ 𝐷 )  =  ( ( 𝐴 ‘ 𝑀 )  /  ( 𝐵 ‘ 𝑁 ) ) ) | 
						
							| 119 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 120 | 119 | fvconst2 | ⊢ ( 𝐷  ∈  ℕ0  →  ( ( ℕ0  ×  { 0 } ) ‘ 𝐷 )  =  0 ) | 
						
							| 121 | 9 120 | syl | ⊢ ( 𝜑  →  ( ( ℕ0  ×  { 0 } ) ‘ 𝐷 )  =  0 ) | 
						
							| 122 | 112 118 121 | 3netr4d | ⊢ ( 𝜑  →  ( ( coeff ‘ 𝐻 ) ‘ 𝐷 )  ≠  ( ( ℕ0  ×  { 0 } ) ‘ 𝐷 ) ) | 
						
							| 123 |  | fveq2 | ⊢ ( 𝐻  =  0𝑝  →  ( coeff ‘ 𝐻 )  =  ( coeff ‘ 0𝑝 ) ) | 
						
							| 124 |  | coe0 | ⊢ ( coeff ‘ 0𝑝 )  =  ( ℕ0  ×  { 0 } ) | 
						
							| 125 | 123 124 | eqtrdi | ⊢ ( 𝐻  =  0𝑝  →  ( coeff ‘ 𝐻 )  =  ( ℕ0  ×  { 0 } ) ) | 
						
							| 126 | 125 | fveq1d | ⊢ ( 𝐻  =  0𝑝  →  ( ( coeff ‘ 𝐻 ) ‘ 𝐷 )  =  ( ( ℕ0  ×  { 0 } ) ‘ 𝐷 ) ) | 
						
							| 127 | 126 | necon3i | ⊢ ( ( ( coeff ‘ 𝐻 ) ‘ 𝐷 )  ≠  ( ( ℕ0  ×  { 0 } ) ‘ 𝐷 )  →  𝐻  ≠  0𝑝 ) | 
						
							| 128 | 122 127 | syl | ⊢ ( 𝜑  →  𝐻  ≠  0𝑝 ) | 
						
							| 129 |  | eqid | ⊢ ( deg ‘ 𝐻 )  =  ( deg ‘ 𝐻 ) | 
						
							| 130 | 129 18 | dgrmul | ⊢ ( ( ( 𝐻  ∈  ( Poly ‘ 𝑆 )  ∧  𝐻  ≠  0𝑝 )  ∧  ( 𝐺  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ≠  0𝑝 ) )  →  ( deg ‘ ( 𝐻  ∘f   ·  𝐺 ) )  =  ( ( deg ‘ 𝐻 )  +  𝑁 ) ) | 
						
							| 131 | 55 128 6 7 130 | syl22anc | ⊢ ( 𝜑  →  ( deg ‘ ( 𝐻  ∘f   ·  𝐺 ) )  =  ( ( deg ‘ 𝐻 )  +  𝑁 ) ) | 
						
							| 132 | 13 | dgr1term | ⊢ ( ( ( ( 𝐴 ‘ 𝑀 )  /  ( 𝐵 ‘ 𝑁 ) )  ∈  ℂ  ∧  ( ( 𝐴 ‘ 𝑀 )  /  ( 𝐵 ‘ 𝑁 ) )  ≠  0  ∧  𝐷  ∈  ℕ0 )  →  ( deg ‘ 𝐻 )  =  𝐷 ) | 
						
							| 133 | 113 112 9 132 | syl3anc | ⊢ ( 𝜑  →  ( deg ‘ 𝐻 )  =  𝐷 ) | 
						
							| 134 | 133 10 | eqtr4d | ⊢ ( 𝜑  →  ( deg ‘ 𝐻 )  =  ( 𝑀  −  𝑁 ) ) | 
						
							| 135 | 134 | oveq1d | ⊢ ( 𝜑  →  ( ( deg ‘ 𝐻 )  +  𝑁 )  =  ( ( 𝑀  −  𝑁 )  +  𝑁 ) ) | 
						
							| 136 | 26 | nn0cnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 137 | 33 | nn0cnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 138 | 136 137 | npcand | ⊢ ( 𝜑  →  ( ( 𝑀  −  𝑁 )  +  𝑁 )  =  𝑀 ) | 
						
							| 139 | 135 138 | eqtrd | ⊢ ( 𝜑  →  ( ( deg ‘ 𝐻 )  +  𝑁 )  =  𝑀 ) | 
						
							| 140 | 131 139 | eqtrd | ⊢ ( 𝜑  →  ( deg ‘ ( 𝐻  ∘f   ·  𝐺 ) )  =  𝑀 ) | 
						
							| 141 | 140 | ifeq1d | ⊢ ( 𝜑  →  if ( 𝑀  ≤  ( deg ‘ ( 𝐻  ∘f   ·  𝐺 ) ) ,  ( deg ‘ ( 𝐻  ∘f   ·  𝐺 ) ) ,  𝑀 )  =  if ( 𝑀  ≤  ( deg ‘ ( 𝐻  ∘f   ·  𝐺 ) ) ,  𝑀 ,  𝑀 ) ) | 
						
							| 142 |  | ifid | ⊢ if ( 𝑀  ≤  ( deg ‘ ( 𝐻  ∘f   ·  𝐺 ) ) ,  𝑀 ,  𝑀 )  =  𝑀 | 
						
							| 143 | 141 142 | eqtrdi | ⊢ ( 𝜑  →  if ( 𝑀  ≤  ( deg ‘ ( 𝐻  ∘f   ·  𝐺 ) ) ,  ( deg ‘ ( 𝐻  ∘f   ·  𝐺 ) ) ,  𝑀 )  =  𝑀 ) | 
						
							| 144 | 107 143 | breqtrd | ⊢ ( 𝜑  →  ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  ≤  𝑀 ) | 
						
							| 145 |  | eqid | ⊢ ( coeff ‘ ( 𝐻  ∘f   ·  𝐺 ) )  =  ( coeff ‘ ( 𝐻  ∘f   ·  𝐺 ) ) | 
						
							| 146 | 15 145 | coesub | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝐻  ∘f   ·  𝐺 )  ∈  ( Poly ‘ 𝑆 ) )  →  ( coeff ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  =  ( 𝐴  ∘f   −  ( coeff ‘ ( 𝐻  ∘f   ·  𝐺 ) ) ) ) | 
						
							| 147 | 5 104 146 | syl2anc | ⊢ ( 𝜑  →  ( coeff ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  =  ( 𝐴  ∘f   −  ( coeff ‘ ( 𝐻  ∘f   ·  𝐺 ) ) ) ) | 
						
							| 148 | 147 | fveq1d | ⊢ ( 𝜑  →  ( ( coeff ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) ) ‘ 𝑀 )  =  ( ( 𝐴  ∘f   −  ( coeff ‘ ( 𝐻  ∘f   ·  𝐺 ) ) ) ‘ 𝑀 ) ) | 
						
							| 149 | 15 | coef3 | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 150 |  | ffn | ⊢ ( 𝐴 : ℕ0 ⟶ ℂ  →  𝐴  Fn  ℕ0 ) | 
						
							| 151 | 5 149 150 | 3syl | ⊢ ( 𝜑  →  𝐴  Fn  ℕ0 ) | 
						
							| 152 | 145 | coef3 | ⊢ ( ( 𝐻  ∘f   ·  𝐺 )  ∈  ( Poly ‘ 𝑆 )  →  ( coeff ‘ ( 𝐻  ∘f   ·  𝐺 ) ) : ℕ0 ⟶ ℂ ) | 
						
							| 153 |  | ffn | ⊢ ( ( coeff ‘ ( 𝐻  ∘f   ·  𝐺 ) ) : ℕ0 ⟶ ℂ  →  ( coeff ‘ ( 𝐻  ∘f   ·  𝐺 ) )  Fn  ℕ0 ) | 
						
							| 154 | 104 152 153 | 3syl | ⊢ ( 𝜑  →  ( coeff ‘ ( 𝐻  ∘f   ·  𝐺 ) )  Fn  ℕ0 ) | 
						
							| 155 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 156 | 155 | a1i | ⊢ ( 𝜑  →  ℕ0  ∈  V ) | 
						
							| 157 |  | inidm | ⊢ ( ℕ0  ∩  ℕ0 )  =  ℕ0 | 
						
							| 158 |  | eqidd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑀 )  =  ( 𝐴 ‘ 𝑀 ) ) | 
						
							| 159 |  | eqid | ⊢ ( coeff ‘ 𝐻 )  =  ( coeff ‘ 𝐻 ) | 
						
							| 160 | 159 16 129 18 | coemulhi | ⊢ ( ( 𝐻  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( ( coeff ‘ ( 𝐻  ∘f   ·  𝐺 ) ) ‘ ( ( deg ‘ 𝐻 )  +  𝑁 ) )  =  ( ( ( coeff ‘ 𝐻 ) ‘ ( deg ‘ 𝐻 ) )  ·  ( 𝐵 ‘ 𝑁 ) ) ) | 
						
							| 161 | 55 6 160 | syl2anc | ⊢ ( 𝜑  →  ( ( coeff ‘ ( 𝐻  ∘f   ·  𝐺 ) ) ‘ ( ( deg ‘ 𝐻 )  +  𝑁 ) )  =  ( ( ( coeff ‘ 𝐻 ) ‘ ( deg ‘ 𝐻 ) )  ·  ( 𝐵 ‘ 𝑁 ) ) ) | 
						
							| 162 | 139 | fveq2d | ⊢ ( 𝜑  →  ( ( coeff ‘ ( 𝐻  ∘f   ·  𝐺 ) ) ‘ ( ( deg ‘ 𝐻 )  +  𝑁 ) )  =  ( ( coeff ‘ ( 𝐻  ∘f   ·  𝐺 ) ) ‘ 𝑀 ) ) | 
						
							| 163 | 133 | fveq2d | ⊢ ( 𝜑  →  ( ( coeff ‘ 𝐻 ) ‘ ( deg ‘ 𝐻 ) )  =  ( ( coeff ‘ 𝐻 ) ‘ 𝐷 ) ) | 
						
							| 164 | 163 118 | eqtrd | ⊢ ( 𝜑  →  ( ( coeff ‘ 𝐻 ) ‘ ( deg ‘ 𝐻 ) )  =  ( ( 𝐴 ‘ 𝑀 )  /  ( 𝐵 ‘ 𝑁 ) ) ) | 
						
							| 165 | 164 | oveq1d | ⊢ ( 𝜑  →  ( ( ( coeff ‘ 𝐻 ) ‘ ( deg ‘ 𝐻 ) )  ·  ( 𝐵 ‘ 𝑁 ) )  =  ( ( ( 𝐴 ‘ 𝑀 )  /  ( 𝐵 ‘ 𝑁 ) )  ·  ( 𝐵 ‘ 𝑁 ) ) ) | 
						
							| 166 | 28 35 39 | divcan1d | ⊢ ( 𝜑  →  ( ( ( 𝐴 ‘ 𝑀 )  /  ( 𝐵 ‘ 𝑁 ) )  ·  ( 𝐵 ‘ 𝑁 ) )  =  ( 𝐴 ‘ 𝑀 ) ) | 
						
							| 167 | 165 166 | eqtrd | ⊢ ( 𝜑  →  ( ( ( coeff ‘ 𝐻 ) ‘ ( deg ‘ 𝐻 ) )  ·  ( 𝐵 ‘ 𝑁 ) )  =  ( 𝐴 ‘ 𝑀 ) ) | 
						
							| 168 | 161 162 167 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( coeff ‘ ( 𝐻  ∘f   ·  𝐺 ) ) ‘ 𝑀 )  =  ( 𝐴 ‘ 𝑀 ) ) | 
						
							| 169 | 168 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ0 )  →  ( ( coeff ‘ ( 𝐻  ∘f   ·  𝐺 ) ) ‘ 𝑀 )  =  ( 𝐴 ‘ 𝑀 ) ) | 
						
							| 170 | 151 154 156 156 157 158 169 | ofval | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ0 )  →  ( ( 𝐴  ∘f   −  ( coeff ‘ ( 𝐻  ∘f   ·  𝐺 ) ) ) ‘ 𝑀 )  =  ( ( 𝐴 ‘ 𝑀 )  −  ( 𝐴 ‘ 𝑀 ) ) ) | 
						
							| 171 | 26 170 | mpdan | ⊢ ( 𝜑  →  ( ( 𝐴  ∘f   −  ( coeff ‘ ( 𝐻  ∘f   ·  𝐺 ) ) ) ‘ 𝑀 )  =  ( ( 𝐴 ‘ 𝑀 )  −  ( 𝐴 ‘ 𝑀 ) ) ) | 
						
							| 172 | 28 | subidd | ⊢ ( 𝜑  →  ( ( 𝐴 ‘ 𝑀 )  −  ( 𝐴 ‘ 𝑀 ) )  =  0 ) | 
						
							| 173 | 148 171 172 | 3eqtrd | ⊢ ( 𝜑  →  ( ( coeff ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) ) ‘ 𝑀 )  =  0 ) | 
						
							| 174 | 5 104 1 2 4 | plysub | ⊢ ( 𝜑  →  ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 175 |  | dgrcl | ⊢ ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∈  ( Poly ‘ 𝑆 )  →  ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  ∈  ℕ0 ) | 
						
							| 176 | 174 175 | syl | ⊢ ( 𝜑  →  ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  ∈  ℕ0 ) | 
						
							| 177 | 176 | nn0red | ⊢ ( 𝜑  →  ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  ∈  ℝ ) | 
						
							| 178 | 26 | nn0red | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 179 | 33 | nn0red | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 180 | 177 178 179 | ltsub1d | ⊢ ( 𝜑  →  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  <  𝑀  ↔  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  −  𝑁 )  <  ( 𝑀  −  𝑁 ) ) ) | 
						
							| 181 | 10 | breq2d | ⊢ ( 𝜑  →  ( ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  −  𝑁 )  <  ( 𝑀  −  𝑁 )  ↔  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  −  𝑁 )  <  𝐷 ) ) | 
						
							| 182 | 180 181 | bitrd | ⊢ ( 𝜑  →  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  <  𝑀  ↔  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  −  𝑁 )  <  𝐷 ) ) | 
						
							| 183 | 182 | orbi2d | ⊢ ( 𝜑  →  ( ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  =  0𝑝  ∨  ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  <  𝑀 )  ↔  ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  =  0𝑝  ∨  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  −  𝑁 )  <  𝐷 ) ) ) | 
						
							| 184 |  | eqid | ⊢ ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  =  ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) ) | 
						
							| 185 |  | eqid | ⊢ ( coeff ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  =  ( coeff ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) ) | 
						
							| 186 | 184 185 | dgrlt | ⊢ ( ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∈  ( Poly ‘ 𝑆 )  ∧  𝑀  ∈  ℕ0 )  →  ( ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  =  0𝑝  ∨  ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  <  𝑀 )  ↔  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  ≤  𝑀  ∧  ( ( coeff ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) ) ‘ 𝑀 )  =  0 ) ) ) | 
						
							| 187 | 174 26 186 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  =  0𝑝  ∨  ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  <  𝑀 )  ↔  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  ≤  𝑀  ∧  ( ( coeff ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) ) ‘ 𝑀 )  =  0 ) ) ) | 
						
							| 188 | 183 187 | bitr3d | ⊢ ( 𝜑  →  ( ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  =  0𝑝  ∨  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  −  𝑁 )  <  𝐷 )  ↔  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  ≤  𝑀  ∧  ( ( coeff ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) ) ‘ 𝑀 )  =  0 ) ) ) | 
						
							| 189 | 144 173 188 | mpbir2and | ⊢ ( 𝜑  →  ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  =  0𝑝  ∨  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  −  𝑁 )  <  𝐷 ) ) | 
						
							| 190 |  | eqeq1 | ⊢ ( 𝑓  =  ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  →  ( 𝑓  =  0𝑝  ↔  ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  =  0𝑝 ) ) | 
						
							| 191 |  | fveq2 | ⊢ ( 𝑓  =  ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  →  ( deg ‘ 𝑓 )  =  ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) ) ) | 
						
							| 192 | 191 | oveq1d | ⊢ ( 𝑓  =  ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  →  ( ( deg ‘ 𝑓 )  −  𝑁 )  =  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  −  𝑁 ) ) | 
						
							| 193 | 192 | breq1d | ⊢ ( 𝑓  =  ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  →  ( ( ( deg ‘ 𝑓 )  −  𝑁 )  <  𝐷  ↔  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  −  𝑁 )  <  𝐷 ) ) | 
						
							| 194 | 190 193 | orbi12d | ⊢ ( 𝑓  =  ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  →  ( ( 𝑓  =  0𝑝  ∨  ( ( deg ‘ 𝑓 )  −  𝑁 )  <  𝐷 )  ↔  ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  =  0𝑝  ∨  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  −  𝑁 )  <  𝐷 ) ) ) | 
						
							| 195 |  | oveq1 | ⊢ ( 𝑓  =  ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  →  ( 𝑓  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) )  =  ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) ) ) | 
						
							| 196 | 12 195 | eqtrid | ⊢ ( 𝑓  =  ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  →  𝑈  =  ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) ) ) | 
						
							| 197 | 196 | eqeq1d | ⊢ ( 𝑓  =  ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  →  ( 𝑈  =  0𝑝  ↔  ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) )  =  0𝑝 ) ) | 
						
							| 198 | 196 | fveq2d | ⊢ ( 𝑓  =  ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  →  ( deg ‘ 𝑈 )  =  ( deg ‘ ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) ) ) ) | 
						
							| 199 | 198 | breq1d | ⊢ ( 𝑓  =  ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  →  ( ( deg ‘ 𝑈 )  <  𝑁  ↔  ( deg ‘ ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) ) )  <  𝑁 ) ) | 
						
							| 200 | 197 199 | orbi12d | ⊢ ( 𝑓  =  ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  →  ( ( 𝑈  =  0𝑝  ∨  ( deg ‘ 𝑈 )  <  𝑁 )  ↔  ( ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) )  =  0𝑝  ∨  ( deg ‘ ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) ) )  <  𝑁 ) ) ) | 
						
							| 201 | 200 | rexbidv | ⊢ ( 𝑓  =  ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  →  ( ∃ 𝑝  ∈  ( Poly ‘ 𝑆 ) ( 𝑈  =  0𝑝  ∨  ( deg ‘ 𝑈 )  <  𝑁 )  ↔  ∃ 𝑝  ∈  ( Poly ‘ 𝑆 ) ( ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) )  =  0𝑝  ∨  ( deg ‘ ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) ) )  <  𝑁 ) ) ) | 
						
							| 202 | 194 201 | imbi12d | ⊢ ( 𝑓  =  ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  →  ( ( ( 𝑓  =  0𝑝  ∨  ( ( deg ‘ 𝑓 )  −  𝑁 )  <  𝐷 )  →  ∃ 𝑝  ∈  ( Poly ‘ 𝑆 ) ( 𝑈  =  0𝑝  ∨  ( deg ‘ 𝑈 )  <  𝑁 ) )  ↔  ( ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  =  0𝑝  ∨  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  −  𝑁 )  <  𝐷 )  →  ∃ 𝑝  ∈  ( Poly ‘ 𝑆 ) ( ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) )  =  0𝑝  ∨  ( deg ‘ ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) ) )  <  𝑁 ) ) ) ) | 
						
							| 203 | 202 14 174 | rspcdva | ⊢ ( 𝜑  →  ( ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  =  0𝑝  ∨  ( ( deg ‘ ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) ) )  −  𝑁 )  <  𝐷 )  →  ∃ 𝑝  ∈  ( Poly ‘ 𝑆 ) ( ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) )  =  0𝑝  ∨  ( deg ‘ ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) ) )  <  𝑁 ) ) ) | 
						
							| 204 | 189 203 | mpd | ⊢ ( 𝜑  →  ∃ 𝑝  ∈  ( Poly ‘ 𝑆 ) ( ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) )  =  0𝑝  ∨  ( deg ‘ ( ( 𝐹  ∘f   −  ( 𝐻  ∘f   ·  𝐺 ) )  ∘f   −  ( 𝐺  ∘f   ·  𝑝 ) ) )  <  𝑁 ) ) | 
						
							| 205 | 103 204 | r19.29a | ⊢ ( 𝜑  →  ∃ 𝑞  ∈  ( Poly ‘ 𝑆 ) ( 𝑅  =  0𝑝  ∨  ( deg ‘ 𝑅 )  <  𝑁 ) ) |