| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyeq0.1 | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 2 |  | plyeq0.2 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 3 |  | plyeq0.3 | ⊢ ( 𝜑  →  𝐴  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) | 
						
							| 4 |  | plyeq0.4 | ⊢ ( 𝜑  →  ( 𝐴  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 } ) | 
						
							| 5 |  | plyeq0.5 | ⊢ ( 𝜑  →  0𝑝  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 6 |  | 0cnd | ⊢ ( 𝜑  →  0  ∈  ℂ ) | 
						
							| 7 | 6 | snssd | ⊢ ( 𝜑  →  { 0 }  ⊆  ℂ ) | 
						
							| 8 | 1 7 | unssd | ⊢ ( 𝜑  →  ( 𝑆  ∪  { 0 } )  ⊆  ℂ ) | 
						
							| 9 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 10 |  | ssexg | ⊢ ( ( ( 𝑆  ∪  { 0 } )  ⊆  ℂ  ∧  ℂ  ∈  V )  →  ( 𝑆  ∪  { 0 } )  ∈  V ) | 
						
							| 11 | 8 9 10 | sylancl | ⊢ ( 𝜑  →  ( 𝑆  ∪  { 0 } )  ∈  V ) | 
						
							| 12 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 13 |  | elmapg | ⊢ ( ( ( 𝑆  ∪  { 0 } )  ∈  V  ∧  ℕ0  ∈  V )  →  ( 𝐴  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ↔  𝐴 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 14 | 11 12 13 | sylancl | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ↔  𝐴 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 15 | 3 14 | mpbid | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } ) ) | 
						
							| 16 | 15 | ffnd | ⊢ ( 𝜑  →  𝐴  Fn  ℕ0 ) | 
						
							| 17 |  | imadmrn | ⊢ ( 𝐴  “  dom  𝐴 )  =  ran  𝐴 | 
						
							| 18 |  | fdm | ⊢ ( 𝐴 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } )  →  dom  𝐴  =  ℕ0 ) | 
						
							| 19 |  | fimacnv | ⊢ ( 𝐴 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } )  →  ( ◡ 𝐴  “  ( 𝑆  ∪  { 0 } ) )  =  ℕ0 ) | 
						
							| 20 | 18 19 | eqtr4d | ⊢ ( 𝐴 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } )  →  dom  𝐴  =  ( ◡ 𝐴  “  ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 21 | 15 20 | syl | ⊢ ( 𝜑  →  dom  𝐴  =  ( ◡ 𝐴  “  ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  =  ∅ )  →  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  =  ∅ ) | 
						
							| 23 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ≠  ∅ )  →  𝑆  ⊆  ℂ ) | 
						
							| 24 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ≠  ∅ )  →  𝑁  ∈  ℕ0 ) | 
						
							| 25 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ≠  ∅ )  →  𝐴  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) | 
						
							| 26 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ≠  ∅ )  →  ( 𝐴  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 } ) | 
						
							| 27 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ≠  ∅ )  →  0𝑝  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 28 |  | eqid | ⊢ sup ( ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) ,  ℝ ,   <  )  =  sup ( ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) ,  ℝ ,   <  ) | 
						
							| 29 |  | simpr | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ≠  ∅ )  →  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ≠  ∅ ) | 
						
							| 30 | 23 24 25 26 27 28 29 | plyeq0lem | ⊢ ¬  ( 𝜑  ∧  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ≠  ∅ ) | 
						
							| 31 | 30 | pm2.21i | ⊢ ( ( 𝜑  ∧  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ≠  ∅ )  →  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  =  ∅ ) | 
						
							| 32 | 22 31 | pm2.61dane | ⊢ ( 𝜑  →  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  =  ∅ ) | 
						
							| 33 | 32 | uneq1d | ⊢ ( 𝜑  →  ( ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ∪  ( ◡ 𝐴  “  { 0 } ) )  =  ( ∅  ∪  ( ◡ 𝐴  “  { 0 } ) ) ) | 
						
							| 34 |  | undif1 | ⊢ ( ( 𝑆  ∖  { 0 } )  ∪  { 0 } )  =  ( 𝑆  ∪  { 0 } ) | 
						
							| 35 | 34 | imaeq2i | ⊢ ( ◡ 𝐴  “  ( ( 𝑆  ∖  { 0 } )  ∪  { 0 } ) )  =  ( ◡ 𝐴  “  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 36 |  | imaundi | ⊢ ( ◡ 𝐴  “  ( ( 𝑆  ∖  { 0 } )  ∪  { 0 } ) )  =  ( ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ∪  ( ◡ 𝐴  “  { 0 } ) ) | 
						
							| 37 | 35 36 | eqtr3i | ⊢ ( ◡ 𝐴  “  ( 𝑆  ∪  { 0 } ) )  =  ( ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ∪  ( ◡ 𝐴  “  { 0 } ) ) | 
						
							| 38 |  | un0 | ⊢ ( ( ◡ 𝐴  “  { 0 } )  ∪  ∅ )  =  ( ◡ 𝐴  “  { 0 } ) | 
						
							| 39 |  | uncom | ⊢ ( ( ◡ 𝐴  “  { 0 } )  ∪  ∅ )  =  ( ∅  ∪  ( ◡ 𝐴  “  { 0 } ) ) | 
						
							| 40 | 38 39 | eqtr3i | ⊢ ( ◡ 𝐴  “  { 0 } )  =  ( ∅  ∪  ( ◡ 𝐴  “  { 0 } ) ) | 
						
							| 41 | 33 37 40 | 3eqtr4g | ⊢ ( 𝜑  →  ( ◡ 𝐴  “  ( 𝑆  ∪  { 0 } ) )  =  ( ◡ 𝐴  “  { 0 } ) ) | 
						
							| 42 | 21 41 | eqtrd | ⊢ ( 𝜑  →  dom  𝐴  =  ( ◡ 𝐴  “  { 0 } ) ) | 
						
							| 43 |  | eqimss | ⊢ ( dom  𝐴  =  ( ◡ 𝐴  “  { 0 } )  →  dom  𝐴  ⊆  ( ◡ 𝐴  “  { 0 } ) ) | 
						
							| 44 | 42 43 | syl | ⊢ ( 𝜑  →  dom  𝐴  ⊆  ( ◡ 𝐴  “  { 0 } ) ) | 
						
							| 45 | 15 | ffund | ⊢ ( 𝜑  →  Fun  𝐴 ) | 
						
							| 46 |  | ssid | ⊢ dom  𝐴  ⊆  dom  𝐴 | 
						
							| 47 |  | funimass3 | ⊢ ( ( Fun  𝐴  ∧  dom  𝐴  ⊆  dom  𝐴 )  →  ( ( 𝐴  “  dom  𝐴 )  ⊆  { 0 }  ↔  dom  𝐴  ⊆  ( ◡ 𝐴  “  { 0 } ) ) ) | 
						
							| 48 | 45 46 47 | sylancl | ⊢ ( 𝜑  →  ( ( 𝐴  “  dom  𝐴 )  ⊆  { 0 }  ↔  dom  𝐴  ⊆  ( ◡ 𝐴  “  { 0 } ) ) ) | 
						
							| 49 | 44 48 | mpbird | ⊢ ( 𝜑  →  ( 𝐴  “  dom  𝐴 )  ⊆  { 0 } ) | 
						
							| 50 | 17 49 | eqsstrrid | ⊢ ( 𝜑  →  ran  𝐴  ⊆  { 0 } ) | 
						
							| 51 |  | df-f | ⊢ ( 𝐴 : ℕ0 ⟶ { 0 }  ↔  ( 𝐴  Fn  ℕ0  ∧  ran  𝐴  ⊆  { 0 } ) ) | 
						
							| 52 | 16 50 51 | sylanbrc | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ { 0 } ) | 
						
							| 53 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 54 | 53 | fconst2 | ⊢ ( 𝐴 : ℕ0 ⟶ { 0 }  ↔  𝐴  =  ( ℕ0  ×  { 0 } ) ) | 
						
							| 55 | 52 54 | sylib | ⊢ ( 𝜑  →  𝐴  =  ( ℕ0  ×  { 0 } ) ) |