Step |
Hyp |
Ref |
Expression |
1 |
|
plyeq0.1 |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
2 |
|
plyeq0.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
3 |
|
plyeq0.3 |
⊢ ( 𝜑 → 𝐴 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) |
4 |
|
plyeq0.4 |
⊢ ( 𝜑 → ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) |
5 |
|
plyeq0.5 |
⊢ ( 𝜑 → 0𝑝 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
6 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
7 |
6
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ ℂ ) |
8 |
1 7
|
unssd |
⊢ ( 𝜑 → ( 𝑆 ∪ { 0 } ) ⊆ ℂ ) |
9 |
|
cnex |
⊢ ℂ ∈ V |
10 |
|
ssexg |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ⊆ ℂ ∧ ℂ ∈ V ) → ( 𝑆 ∪ { 0 } ) ∈ V ) |
11 |
8 9 10
|
sylancl |
⊢ ( 𝜑 → ( 𝑆 ∪ { 0 } ) ∈ V ) |
12 |
|
nn0ex |
⊢ ℕ0 ∈ V |
13 |
|
elmapg |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ∈ V ∧ ℕ0 ∈ V ) → ( 𝐴 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ↔ 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) ) |
14 |
11 12 13
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ↔ 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) ) |
15 |
3 14
|
mpbid |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
16 |
15
|
ffnd |
⊢ ( 𝜑 → 𝐴 Fn ℕ0 ) |
17 |
|
imadmrn |
⊢ ( 𝐴 “ dom 𝐴 ) = ran 𝐴 |
18 |
|
fdm |
⊢ ( 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) → dom 𝐴 = ℕ0 ) |
19 |
|
fimacnv |
⊢ ( 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) → ( ◡ 𝐴 “ ( 𝑆 ∪ { 0 } ) ) = ℕ0 ) |
20 |
18 19
|
eqtr4d |
⊢ ( 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) → dom 𝐴 = ( ◡ 𝐴 “ ( 𝑆 ∪ { 0 } ) ) ) |
21 |
15 20
|
syl |
⊢ ( 𝜑 → dom 𝐴 = ( ◡ 𝐴 “ ( 𝑆 ∪ { 0 } ) ) ) |
22 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) = ∅ ) → ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) = ∅ ) |
23 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ≠ ∅ ) → 𝑆 ⊆ ℂ ) |
24 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ≠ ∅ ) → 𝑁 ∈ ℕ0 ) |
25 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ≠ ∅ ) → 𝐴 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) |
26 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ≠ ∅ ) → ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) |
27 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ≠ ∅ ) → 0𝑝 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
28 |
|
eqid |
⊢ sup ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) , ℝ , < ) = sup ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) , ℝ , < ) |
29 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ≠ ∅ ) → ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ≠ ∅ ) |
30 |
23 24 25 26 27 28 29
|
plyeq0lem |
⊢ ¬ ( 𝜑 ∧ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ≠ ∅ ) |
31 |
30
|
pm2.21i |
⊢ ( ( 𝜑 ∧ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ≠ ∅ ) → ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) = ∅ ) |
32 |
22 31
|
pm2.61dane |
⊢ ( 𝜑 → ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) = ∅ ) |
33 |
32
|
uneq1d |
⊢ ( 𝜑 → ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ∪ ( ◡ 𝐴 “ { 0 } ) ) = ( ∅ ∪ ( ◡ 𝐴 “ { 0 } ) ) ) |
34 |
|
undif1 |
⊢ ( ( 𝑆 ∖ { 0 } ) ∪ { 0 } ) = ( 𝑆 ∪ { 0 } ) |
35 |
34
|
imaeq2i |
⊢ ( ◡ 𝐴 “ ( ( 𝑆 ∖ { 0 } ) ∪ { 0 } ) ) = ( ◡ 𝐴 “ ( 𝑆 ∪ { 0 } ) ) |
36 |
|
imaundi |
⊢ ( ◡ 𝐴 “ ( ( 𝑆 ∖ { 0 } ) ∪ { 0 } ) ) = ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ∪ ( ◡ 𝐴 “ { 0 } ) ) |
37 |
35 36
|
eqtr3i |
⊢ ( ◡ 𝐴 “ ( 𝑆 ∪ { 0 } ) ) = ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ∪ ( ◡ 𝐴 “ { 0 } ) ) |
38 |
|
un0 |
⊢ ( ( ◡ 𝐴 “ { 0 } ) ∪ ∅ ) = ( ◡ 𝐴 “ { 0 } ) |
39 |
|
uncom |
⊢ ( ( ◡ 𝐴 “ { 0 } ) ∪ ∅ ) = ( ∅ ∪ ( ◡ 𝐴 “ { 0 } ) ) |
40 |
38 39
|
eqtr3i |
⊢ ( ◡ 𝐴 “ { 0 } ) = ( ∅ ∪ ( ◡ 𝐴 “ { 0 } ) ) |
41 |
33 37 40
|
3eqtr4g |
⊢ ( 𝜑 → ( ◡ 𝐴 “ ( 𝑆 ∪ { 0 } ) ) = ( ◡ 𝐴 “ { 0 } ) ) |
42 |
21 41
|
eqtrd |
⊢ ( 𝜑 → dom 𝐴 = ( ◡ 𝐴 “ { 0 } ) ) |
43 |
|
eqimss |
⊢ ( dom 𝐴 = ( ◡ 𝐴 “ { 0 } ) → dom 𝐴 ⊆ ( ◡ 𝐴 “ { 0 } ) ) |
44 |
42 43
|
syl |
⊢ ( 𝜑 → dom 𝐴 ⊆ ( ◡ 𝐴 “ { 0 } ) ) |
45 |
15
|
ffund |
⊢ ( 𝜑 → Fun 𝐴 ) |
46 |
|
ssid |
⊢ dom 𝐴 ⊆ dom 𝐴 |
47 |
|
funimass3 |
⊢ ( ( Fun 𝐴 ∧ dom 𝐴 ⊆ dom 𝐴 ) → ( ( 𝐴 “ dom 𝐴 ) ⊆ { 0 } ↔ dom 𝐴 ⊆ ( ◡ 𝐴 “ { 0 } ) ) ) |
48 |
45 46 47
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐴 “ dom 𝐴 ) ⊆ { 0 } ↔ dom 𝐴 ⊆ ( ◡ 𝐴 “ { 0 } ) ) ) |
49 |
44 48
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 “ dom 𝐴 ) ⊆ { 0 } ) |
50 |
17 49
|
eqsstrrid |
⊢ ( 𝜑 → ran 𝐴 ⊆ { 0 } ) |
51 |
|
df-f |
⊢ ( 𝐴 : ℕ0 ⟶ { 0 } ↔ ( 𝐴 Fn ℕ0 ∧ ran 𝐴 ⊆ { 0 } ) ) |
52 |
16 50 51
|
sylanbrc |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ { 0 } ) |
53 |
|
c0ex |
⊢ 0 ∈ V |
54 |
53
|
fconst2 |
⊢ ( 𝐴 : ℕ0 ⟶ { 0 } ↔ 𝐴 = ( ℕ0 × { 0 } ) ) |
55 |
52 54
|
sylib |
⊢ ( 𝜑 → 𝐴 = ( ℕ0 × { 0 } ) ) |