| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyeq0.1 | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 2 |  | plyeq0.2 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 3 |  | plyeq0.3 | ⊢ ( 𝜑  →  𝐴  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) | 
						
							| 4 |  | plyeq0.4 | ⊢ ( 𝜑  →  ( 𝐴  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 } ) | 
						
							| 5 |  | plyeq0.5 | ⊢ ( 𝜑  →  0𝑝  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 6 |  | plyeq0.6 | ⊢ 𝑀  =  sup ( ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) ,  ℝ ,   <  ) | 
						
							| 7 |  | plyeq0.7 | ⊢ ( 𝜑  →  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ≠  ∅ ) | 
						
							| 8 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 9 |  | 1zzd | ⊢ ( 𝜑  →  1  ∈  ℤ ) | 
						
							| 10 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... 𝑁 )  ∈  Fin ) | 
						
							| 11 |  | 1zzd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  →  1  ∈  ℤ ) | 
						
							| 12 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  0  ∈  ℂ ) | 
						
							| 14 | 13 | snssd | ⊢ ( 𝜑  →  { 0 }  ⊆  ℂ ) | 
						
							| 15 | 1 14 | unssd | ⊢ ( 𝜑  →  ( 𝑆  ∪  { 0 } )  ⊆  ℂ ) | 
						
							| 16 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 17 |  | ssexg | ⊢ ( ( ( 𝑆  ∪  { 0 } )  ⊆  ℂ  ∧  ℂ  ∈  V )  →  ( 𝑆  ∪  { 0 } )  ∈  V ) | 
						
							| 18 | 15 16 17 | sylancl | ⊢ ( 𝜑  →  ( 𝑆  ∪  { 0 } )  ∈  V ) | 
						
							| 19 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 20 |  | elmapg | ⊢ ( ( ( 𝑆  ∪  { 0 } )  ∈  V  ∧  ℕ0  ∈  V )  →  ( 𝐴  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ↔  𝐴 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 21 | 18 19 20 | sylancl | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ↔  𝐴 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 22 | 3 21 | mpbid | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } ) ) | 
						
							| 23 | 22 15 | fssd | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 24 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 25 |  | ffvelcdm | ⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 26 | 23 24 25 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 28 | 27 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  →  ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 29 | 28 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  →  ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 30 |  | divcnv | ⊢ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ∈  ℂ  →  ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  /  𝑛 ) )  ⇝  0 ) | 
						
							| 31 | 29 30 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  /  𝑛 ) )  ⇝  0 ) | 
						
							| 32 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 33 | 32 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) )  ∈  V | 
						
							| 34 | 33 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) )  ∈  V ) | 
						
							| 35 |  | oveq2 | ⊢ ( 𝑛  =  𝑚  →  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  /  𝑛 )  =  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  /  𝑚 ) ) | 
						
							| 36 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  /  𝑛 ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  /  𝑛 ) ) | 
						
							| 37 |  | ovex | ⊢ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  /  𝑚 )  ∈  V | 
						
							| 38 | 35 36 37 | fvmpt | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  /  𝑛 ) ) ‘ 𝑚 )  =  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  /  𝑚 ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  /  𝑛 ) ) ‘ 𝑚 )  =  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  /  𝑚 ) ) | 
						
							| 40 |  | nndivre | ⊢ ( ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ∈  ℝ  ∧  𝑚  ∈  ℕ )  →  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  /  𝑚 )  ∈  ℝ ) | 
						
							| 41 | 28 40 | sylan | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  /  𝑚 )  ∈  ℝ ) | 
						
							| 42 | 39 41 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  /  𝑛 ) ) ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 43 |  | oveq1 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) )  =  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( 𝑛  =  𝑚  →  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) )  =  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) ) ) | 
						
							| 45 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) ) | 
						
							| 46 |  | ovex | ⊢ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) )  ∈  V | 
						
							| 47 | 44 45 46 | fvmpt | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) ) ‘ 𝑚 )  =  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) ) ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) ) ‘ 𝑚 )  =  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) ) ) | 
						
							| 49 | 26 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 50 | 49 | abscld | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 51 |  | nnrp | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℝ+ ) | 
						
							| 52 | 51 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℝ+ ) | 
						
							| 53 |  | elfzelz | ⊢ ( 𝑘  ∈  ( 0 ... 𝑁 )  →  𝑘  ∈  ℤ ) | 
						
							| 54 |  | cnvimass | ⊢ ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ⊆  dom  𝐴 | 
						
							| 55 | 54 22 | fssdm | ⊢ ( 𝜑  →  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ⊆  ℕ0 ) | 
						
							| 56 |  | nn0ssz | ⊢ ℕ0  ⊆  ℤ | 
						
							| 57 | 55 56 | sstrdi | ⊢ ( 𝜑  →  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ⊆  ℤ ) | 
						
							| 58 | 2 | nn0red | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 59 | 22 | ffnd | ⊢ ( 𝜑  →  𝐴  Fn  ℕ0 ) | 
						
							| 60 |  | elpreima | ⊢ ( 𝐴  Fn  ℕ0  →  ( 𝑧  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ↔  ( 𝑧  ∈  ℕ0  ∧  ( 𝐴 ‘ 𝑧 )  ∈  ( 𝑆  ∖  { 0 } ) ) ) ) | 
						
							| 61 | 59 60 | syl | ⊢ ( 𝜑  →  ( 𝑧  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ↔  ( 𝑧  ∈  ℕ0  ∧  ( 𝐴 ‘ 𝑧 )  ∈  ( 𝑆  ∖  { 0 } ) ) ) ) | 
						
							| 62 | 61 | simplbda | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) )  →  ( 𝐴 ‘ 𝑧 )  ∈  ( 𝑆  ∖  { 0 } ) ) | 
						
							| 63 |  | eldifsni | ⊢ ( ( 𝐴 ‘ 𝑧 )  ∈  ( 𝑆  ∖  { 0 } )  →  ( 𝐴 ‘ 𝑧 )  ≠  0 ) | 
						
							| 64 | 62 63 | syl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) )  →  ( 𝐴 ‘ 𝑧 )  ≠  0 ) | 
						
							| 65 |  | fveq2 | ⊢ ( 𝑘  =  𝑧  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑧 ) ) | 
						
							| 66 | 65 | neeq1d | ⊢ ( 𝑘  =  𝑧  →  ( ( 𝐴 ‘ 𝑘 )  ≠  0  ↔  ( 𝐴 ‘ 𝑧 )  ≠  0 ) ) | 
						
							| 67 |  | breq1 | ⊢ ( 𝑘  =  𝑧  →  ( 𝑘  ≤  𝑁  ↔  𝑧  ≤  𝑁 ) ) | 
						
							| 68 | 66 67 | imbi12d | ⊢ ( 𝑘  =  𝑧  →  ( ( ( 𝐴 ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 )  ↔  ( ( 𝐴 ‘ 𝑧 )  ≠  0  →  𝑧  ≤  𝑁 ) ) ) | 
						
							| 69 |  | plyco0 | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐴 : ℕ0 ⟶ ℂ )  →  ( ( 𝐴  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 }  ↔  ∀ 𝑘  ∈  ℕ0 ( ( 𝐴 ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 ) ) ) | 
						
							| 70 | 2 23 69 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐴  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 }  ↔  ∀ 𝑘  ∈  ℕ0 ( ( 𝐴 ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 ) ) ) | 
						
							| 71 | 4 70 | mpbid | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℕ0 ( ( 𝐴 ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 ) ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) )  →  ∀ 𝑘  ∈  ℕ0 ( ( 𝐴 ‘ 𝑘 )  ≠  0  →  𝑘  ≤  𝑁 ) ) | 
						
							| 73 | 55 | sselda | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) )  →  𝑧  ∈  ℕ0 ) | 
						
							| 74 | 68 72 73 | rspcdva | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) )  →  ( ( 𝐴 ‘ 𝑧 )  ≠  0  →  𝑧  ≤  𝑁 ) ) | 
						
							| 75 | 64 74 | mpd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) )  →  𝑧  ≤  𝑁 ) | 
						
							| 76 | 75 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) 𝑧  ≤  𝑁 ) | 
						
							| 77 |  | brralrspcev | ⊢ ( ( 𝑁  ∈  ℝ  ∧  ∀ 𝑧  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) 𝑧  ≤  𝑁 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) 𝑧  ≤  𝑥 ) | 
						
							| 78 | 58 76 77 | syl2anc | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) 𝑧  ≤  𝑥 ) | 
						
							| 79 |  | suprzcl | ⊢ ( ( ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ⊆  ℤ  ∧  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) 𝑧  ≤  𝑥 )  →  sup ( ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) ,  ℝ ,   <  )  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) ) | 
						
							| 80 | 57 7 78 79 | syl3anc | ⊢ ( 𝜑  →  sup ( ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) ,  ℝ ,   <  )  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) ) | 
						
							| 81 | 6 80 | eqeltrid | ⊢ ( 𝜑  →  𝑀  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) ) | 
						
							| 82 | 55 81 | sseldd | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 83 | 82 | nn0zd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 84 |  | zsubcl | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑘  −  𝑀 )  ∈  ℤ ) | 
						
							| 85 | 53 83 84 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑘  −  𝑀 )  ∈  ℤ ) | 
						
							| 86 | 85 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( 𝑘  −  𝑀 )  ∈  ℤ ) | 
						
							| 87 | 52 86 | rpexpcld | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) )  ∈  ℝ+ ) | 
						
							| 88 | 87 | rpred | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) )  ∈  ℝ ) | 
						
							| 89 | 50 88 | remulcld | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) )  ∈  ℝ ) | 
						
							| 90 | 48 89 | eqeltrd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) ) ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 91 |  | nnrecre | ⊢ ( 𝑚  ∈  ℕ  →  ( 1  /  𝑚 )  ∈  ℝ ) | 
						
							| 92 | 91 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( 1  /  𝑚 )  ∈  ℝ ) | 
						
							| 93 | 27 | absge0d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  →  0  ≤  ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 94 | 93 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  0  ≤  ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ) | 
						
							| 95 |  | nnre | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℝ ) | 
						
							| 96 | 95 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℝ ) | 
						
							| 97 |  | nnge1 | ⊢ ( 𝑚  ∈  ℕ  →  1  ≤  𝑚 ) | 
						
							| 98 | 97 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  1  ≤  𝑚 ) | 
						
							| 99 |  | 1red | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  1  ∈  ℝ ) | 
						
							| 100 | 86 | zred | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( 𝑘  −  𝑀 )  ∈  ℝ ) | 
						
							| 101 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  𝑘  <  𝑀 ) | 
						
							| 102 | 53 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 103 | 102 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  𝑘  ∈  ℤ ) | 
						
							| 104 | 83 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  𝑀  ∈  ℤ ) | 
						
							| 105 |  | zltp1le | ⊢ ( ( 𝑘  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( 𝑘  <  𝑀  ↔  ( 𝑘  +  1 )  ≤  𝑀 ) ) | 
						
							| 106 | 103 104 105 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( 𝑘  <  𝑀  ↔  ( 𝑘  +  1 )  ≤  𝑀 ) ) | 
						
							| 107 | 101 106 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( 𝑘  +  1 )  ≤  𝑀 ) | 
						
							| 108 | 24 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 109 | 108 | nn0red | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑘  ∈  ℝ ) | 
						
							| 110 | 109 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  𝑘  ∈  ℝ ) | 
						
							| 111 | 82 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 112 | 111 | nn0red | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 113 | 112 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  𝑀  ∈  ℝ ) | 
						
							| 114 | 110 99 113 | leaddsub2d | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑘  +  1 )  ≤  𝑀  ↔  1  ≤  ( 𝑀  −  𝑘 ) ) ) | 
						
							| 115 | 107 114 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  1  ≤  ( 𝑀  −  𝑘 ) ) | 
						
							| 116 | 109 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑘  ∈  ℂ ) | 
						
							| 117 | 116 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  𝑘  ∈  ℂ ) | 
						
							| 118 | 112 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑀  ∈  ℂ ) | 
						
							| 119 | 118 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  𝑀  ∈  ℂ ) | 
						
							| 120 | 117 119 | negsubdi2d | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  - ( 𝑘  −  𝑀 )  =  ( 𝑀  −  𝑘 ) ) | 
						
							| 121 | 115 120 | breqtrrd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  1  ≤  - ( 𝑘  −  𝑀 ) ) | 
						
							| 122 | 99 100 121 | lenegcon2d | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( 𝑘  −  𝑀 )  ≤  - 1 ) | 
						
							| 123 |  | neg1z | ⊢ - 1  ∈  ℤ | 
						
							| 124 |  | eluz | ⊢ ( ( ( 𝑘  −  𝑀 )  ∈  ℤ  ∧  - 1  ∈  ℤ )  →  ( - 1  ∈  ( ℤ≥ ‘ ( 𝑘  −  𝑀 ) )  ↔  ( 𝑘  −  𝑀 )  ≤  - 1 ) ) | 
						
							| 125 | 86 123 124 | sylancl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( - 1  ∈  ( ℤ≥ ‘ ( 𝑘  −  𝑀 ) )  ↔  ( 𝑘  −  𝑀 )  ≤  - 1 ) ) | 
						
							| 126 | 122 125 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  - 1  ∈  ( ℤ≥ ‘ ( 𝑘  −  𝑀 ) ) ) | 
						
							| 127 | 96 98 126 | leexp2ad | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) )  ≤  ( 𝑚 ↑ - 1 ) ) | 
						
							| 128 |  | nncn | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℂ ) | 
						
							| 129 | 128 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℂ ) | 
						
							| 130 |  | expn1 | ⊢ ( 𝑚  ∈  ℂ  →  ( 𝑚 ↑ - 1 )  =  ( 1  /  𝑚 ) ) | 
						
							| 131 | 129 130 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( 𝑚 ↑ - 1 )  =  ( 1  /  𝑚 ) ) | 
						
							| 132 | 127 131 | breqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) )  ≤  ( 1  /  𝑚 ) ) | 
						
							| 133 | 88 92 50 94 132 | lemul2ad | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) )  ≤  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 1  /  𝑚 ) ) ) | 
						
							| 134 | 29 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ∈  ℂ ) | 
						
							| 135 |  | nnne0 | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ≠  0 ) | 
						
							| 136 | 135 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  𝑚  ≠  0 ) | 
						
							| 137 | 134 129 136 | divrecd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  /  𝑚 )  =  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 1  /  𝑚 ) ) ) | 
						
							| 138 | 39 137 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  /  𝑛 ) ) ‘ 𝑚 )  =  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 1  /  𝑚 ) ) ) | 
						
							| 139 | 133 48 138 | 3brtr4d | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) ) ‘ 𝑚 )  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  /  𝑛 ) ) ‘ 𝑚 ) ) | 
						
							| 140 | 87 | rpge0d | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  0  ≤  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) ) | 
						
							| 141 | 50 88 94 140 | mulge0d | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  0  ≤  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) ) ) | 
						
							| 142 | 141 48 | breqtrrd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  0  ≤  ( ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) ) ‘ 𝑚 ) ) | 
						
							| 143 | 8 11 31 34 42 90 139 142 | climsqz2 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) )  ⇝  0 ) | 
						
							| 144 | 32 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) )  ∈  V | 
						
							| 145 | 144 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) )  ∈  V ) | 
						
							| 146 | 43 | oveq2d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) )  =  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) ) ) | 
						
							| 147 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) ) | 
						
							| 148 |  | ovex | ⊢ ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) )  ∈  V | 
						
							| 149 | 146 147 148 | fvmpt | ⊢ ( 𝑚  ∈  ℕ  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) ) ‘ 𝑚 )  =  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) ) ) | 
						
							| 150 | 149 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) ) ‘ 𝑚 )  =  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) ) ) | 
						
							| 151 | 23 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 152 | 151 24 25 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 153 | 128 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑚  ∈  ℂ ) | 
						
							| 154 | 135 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑚  ≠  0 ) | 
						
							| 155 | 83 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑀  ∈  ℤ ) | 
						
							| 156 | 53 155 84 | syl2anr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑘  −  𝑀 )  ∈  ℤ ) | 
						
							| 157 | 153 154 156 | expclzd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) )  ∈  ℂ ) | 
						
							| 158 | 152 157 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) )  ∈  ℂ ) | 
						
							| 159 | 150 158 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) ) ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 160 | 159 | an32s | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) ) ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 161 | 160 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) ) ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 162 | 88 | recnd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) )  ∈  ℂ ) | 
						
							| 163 | 49 162 | absmuld | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( abs ‘ ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) ) )  =  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( abs ‘ ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) ) ) ) | 
						
							| 164 | 88 140 | absidd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( abs ‘ ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) )  =  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) ) | 
						
							| 165 | 164 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( abs ‘ ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) ) )  =  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) ) ) | 
						
							| 166 | 163 165 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( abs ‘ ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) ) )  =  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) ) ) | 
						
							| 167 | 149 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) ) ‘ 𝑚 )  =  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) ) ) | 
						
							| 168 | 167 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( abs ‘ ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) ) ‘ 𝑚 ) )  =  ( abs ‘ ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) ) ) ) | 
						
							| 169 | 166 168 48 | 3eqtr4rd | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) ) ‘ 𝑚 )  =  ( abs ‘ ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) ) ‘ 𝑚 ) ) ) | 
						
							| 170 | 8 11 145 34 161 169 | climabs0 | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) )  ⇝  0  ↔  ( 𝑛  ∈  ℕ  ↦  ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) )  ⇝  0 ) ) | 
						
							| 171 | 143 170 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) )  ⇝  0 ) | 
						
							| 172 | 109 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  →  𝑘  ∈  ℝ ) | 
						
							| 173 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  →  𝑘  <  𝑀 ) | 
						
							| 174 | 172 173 | ltned | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  →  𝑘  ≠  𝑀 ) | 
						
							| 175 |  | velsn | ⊢ ( 𝑘  ∈  { 𝑀 }  ↔  𝑘  =  𝑀 ) | 
						
							| 176 | 175 | necon3bbii | ⊢ ( ¬  𝑘  ∈  { 𝑀 }  ↔  𝑘  ≠  𝑀 ) | 
						
							| 177 | 174 176 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  →  ¬  𝑘  ∈  { 𝑀 } ) | 
						
							| 178 | 177 | iffalsed | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  →  if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 )  =  0 ) | 
						
							| 179 | 171 178 | breqtrrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑘  <  𝑀 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) )  ⇝  if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 ) ) | 
						
							| 180 |  | nncn | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℂ ) | 
						
							| 181 | 180 | ad2antlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  =  0 )  →  𝑛  ∈  ℂ ) | 
						
							| 182 |  | nnne0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ≠  0 ) | 
						
							| 183 | 182 | ad2antlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  =  0 )  →  𝑛  ≠  0 ) | 
						
							| 184 | 85 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  =  0 )  →  ( 𝑘  −  𝑀 )  ∈  ℤ ) | 
						
							| 185 | 181 183 184 | expclzd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  =  0 )  →  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) )  ∈  ℂ ) | 
						
							| 186 | 185 | mul02d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  =  0 )  →  ( 0  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) )  =  0 ) | 
						
							| 187 |  | simpr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  =  0 )  →  ( 𝐴 ‘ 𝑘 )  =  0 ) | 
						
							| 188 | 187 | oveq1d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  =  0 )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) )  =  ( 0  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) ) | 
						
							| 189 | 187 | ifeq1d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  =  0 )  →  if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 )  =  if ( 𝑘  ∈  { 𝑀 } ,  0 ,  0 ) ) | 
						
							| 190 |  | ifid | ⊢ if ( 𝑘  ∈  { 𝑀 } ,  0 ,  0 )  =  0 | 
						
							| 191 | 189 190 | eqtrdi | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  =  0 )  →  if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 )  =  0 ) | 
						
							| 192 | 186 188 191 | 3eqtr4d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  =  0 )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) )  =  if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 ) ) | 
						
							| 193 | 26 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 194 | 193 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 195 | 194 | mulridd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  ( ( 𝐴 ‘ 𝑘 )  ·  1 )  =  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 196 |  | nn0ssre | ⊢ ℕ0  ⊆  ℝ | 
						
							| 197 | 55 196 | sstrdi | ⊢ ( 𝜑  →  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ⊆  ℝ ) | 
						
							| 198 | 197 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ⊆  ℝ ) | 
						
							| 199 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ≠  ∅ ) | 
						
							| 200 | 78 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) 𝑧  ≤  𝑥 ) | 
						
							| 201 | 24 | ad2antlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 202 |  | ffvelcdm | ⊢ ( ( 𝐴 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 203 | 22 24 202 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 204 | 203 | anim1i | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  ( ( 𝐴 ‘ 𝑘 )  ∈  ( 𝑆  ∪  { 0 } )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 ) ) | 
						
							| 205 |  | eldifsn | ⊢ ( ( 𝐴 ‘ 𝑘 )  ∈  ( ( 𝑆  ∪  { 0 } )  ∖  { 0 } )  ↔  ( ( 𝐴 ‘ 𝑘 )  ∈  ( 𝑆  ∪  { 0 } )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 ) ) | 
						
							| 206 | 204 205 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ( ( 𝑆  ∪  { 0 } )  ∖  { 0 } ) ) | 
						
							| 207 |  | difun2 | ⊢ ( ( 𝑆  ∪  { 0 } )  ∖  { 0 } )  =  ( 𝑆  ∖  { 0 } ) | 
						
							| 208 | 206 207 | eleqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ( 𝑆  ∖  { 0 } ) ) | 
						
							| 209 |  | elpreima | ⊢ ( 𝐴  Fn  ℕ0  →  ( 𝑘  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ↔  ( 𝑘  ∈  ℕ0  ∧  ( 𝐴 ‘ 𝑘 )  ∈  ( 𝑆  ∖  { 0 } ) ) ) ) | 
						
							| 210 | 59 209 | syl | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ↔  ( 𝑘  ∈  ℕ0  ∧  ( 𝐴 ‘ 𝑘 )  ∈  ( 𝑆  ∖  { 0 } ) ) ) ) | 
						
							| 211 | 210 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  ( 𝑘  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ↔  ( 𝑘  ∈  ℕ0  ∧  ( 𝐴 ‘ 𝑘 )  ∈  ( 𝑆  ∖  { 0 } ) ) ) ) | 
						
							| 212 | 201 208 211 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  𝑘  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) ) | 
						
							| 213 | 198 199 200 212 | suprubd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  𝑘  ≤  sup ( ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) ,  ℝ ,   <  ) ) | 
						
							| 214 | 213 6 | breqtrrdi | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  𝑘  ≤  𝑀 ) | 
						
							| 215 | 214 | ad4ant14 | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  𝑘  ≤  𝑀 ) | 
						
							| 216 |  | simpllr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  𝑀  ≤  𝑘 ) | 
						
							| 217 | 109 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  𝑘  ∈  ℝ ) | 
						
							| 218 | 112 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  𝑀  ∈  ℝ ) | 
						
							| 219 | 217 218 | letri3d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  ( 𝑘  =  𝑀  ↔  ( 𝑘  ≤  𝑀  ∧  𝑀  ≤  𝑘 ) ) ) | 
						
							| 220 | 215 216 219 | mpbir2and | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  𝑘  =  𝑀 ) | 
						
							| 221 | 220 | oveq1d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  ( 𝑘  −  𝑀 )  =  ( 𝑀  −  𝑀 ) ) | 
						
							| 222 | 118 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  𝑀  ∈  ℂ ) | 
						
							| 223 | 222 | subidd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  ( 𝑀  −  𝑀 )  =  0 ) | 
						
							| 224 | 221 223 | eqtrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  ( 𝑘  −  𝑀 )  =  0 ) | 
						
							| 225 | 224 | oveq2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) )  =  ( 𝑛 ↑ 0 ) ) | 
						
							| 226 | 180 | ad2antlr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  𝑛  ∈  ℂ ) | 
						
							| 227 | 226 | exp0d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  ( 𝑛 ↑ 0 )  =  1 ) | 
						
							| 228 | 225 227 | eqtrd | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) )  =  1 ) | 
						
							| 229 | 228 | oveq2d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) )  =  ( ( 𝐴 ‘ 𝑘 )  ·  1 ) ) | 
						
							| 230 | 220 175 | sylibr | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  𝑘  ∈  { 𝑀 } ) | 
						
							| 231 | 230 | iftrued | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 )  =  ( 𝐴 ‘ 𝑘 ) ) | 
						
							| 232 | 195 229 231 | 3eqtr4d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  ∧  ( 𝐴 ‘ 𝑘 )  ≠  0 )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) )  =  if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 ) ) | 
						
							| 233 | 192 232 | pm2.61dane | ⊢ ( ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) )  =  if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 ) ) | 
						
							| 234 | 233 | mpteq2dva | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) )  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 ) ) ) | 
						
							| 235 |  | fconstmpt | ⊢ ( ℕ  ×  { if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 ) } )  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 ) ) | 
						
							| 236 | 234 235 | eqtr4di | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) )  =  ( ℕ  ×  { if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 ) } ) ) | 
						
							| 237 |  | ifcl | ⊢ ( ( ( 𝐴 ‘ 𝑘 )  ∈  ℂ  ∧  0  ∈  ℂ )  →  if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 )  ∈  ℂ ) | 
						
							| 238 | 193 12 237 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  →  if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 )  ∈  ℂ ) | 
						
							| 239 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 240 | 8 | eqimss2i | ⊢ ( ℤ≥ ‘ 1 )  ⊆  ℕ | 
						
							| 241 | 240 32 | climconst2 | ⊢ ( ( if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 )  ∈  ℂ  ∧  1  ∈  ℤ )  →  ( ℕ  ×  { if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 ) } )  ⇝  if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 ) ) | 
						
							| 242 | 238 239 241 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  →  ( ℕ  ×  { if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 ) } )  ⇝  if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 ) ) | 
						
							| 243 | 236 242 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  ∧  𝑀  ≤  𝑘 )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) )  ⇝  if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 ) ) | 
						
							| 244 | 179 243 109 112 | ltlecasei | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) )  ⇝  if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 ) ) | 
						
							| 245 |  | snex | ⊢ { 0 }  ∈  V | 
						
							| 246 | 32 245 | xpex | ⊢ ( ℕ  ×  { 0 } )  ∈  V | 
						
							| 247 | 246 | a1i | ⊢ ( 𝜑  →  ( ℕ  ×  { 0 } )  ∈  V ) | 
						
							| 248 | 160 | anasss | ⊢ ( ( 𝜑  ∧  ( 𝑘  ∈  ( 0 ... 𝑁 )  ∧  𝑚  ∈  ℕ ) )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) ) ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 249 | 5 | fveq1d | ⊢ ( 𝜑  →  ( 0𝑝 ‘ 𝑚 )  =  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑚 ) ) | 
						
							| 250 | 249 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 0𝑝 ‘ 𝑚 )  =  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑚 ) ) | 
						
							| 251 | 128 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑚  ∈  ℂ ) | 
						
							| 252 |  | 0pval | ⊢ ( 𝑚  ∈  ℂ  →  ( 0𝑝 ‘ 𝑚 )  =  0 ) | 
						
							| 253 | 251 252 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 0𝑝 ‘ 𝑚 )  =  0 ) | 
						
							| 254 |  | oveq1 | ⊢ ( 𝑧  =  𝑚  →  ( 𝑧 ↑ 𝑘 )  =  ( 𝑚 ↑ 𝑘 ) ) | 
						
							| 255 | 254 | oveq2d | ⊢ ( 𝑧  =  𝑚  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ 𝑘 ) ) ) | 
						
							| 256 | 255 | sumeq2sdv | ⊢ ( 𝑧  =  𝑚  →  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ 𝑘 ) ) ) | 
						
							| 257 |  | eqid | ⊢ ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 258 |  | sumex | ⊢ Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ 𝑘 ) )  ∈  V | 
						
							| 259 | 256 257 258 | fvmpt | ⊢ ( 𝑚  ∈  ℂ  →  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑚 )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ 𝑘 ) ) ) | 
						
							| 260 | 251 259 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑚 )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ 𝑘 ) ) ) | 
						
							| 261 | 250 253 260 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  0  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ 𝑘 ) ) ) | 
						
							| 262 | 261 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 0  /  ( 𝑚 ↑ 𝑀 ) )  =  ( Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ 𝑘 ) )  /  ( 𝑚 ↑ 𝑀 ) ) ) | 
						
							| 263 |  | expcl | ⊢ ( ( 𝑚  ∈  ℂ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑚 ↑ 𝑀 )  ∈  ℂ ) | 
						
							| 264 | 128 82 263 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑚 ↑ 𝑀 )  ∈  ℂ ) | 
						
							| 265 | 135 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  𝑚  ≠  0 ) | 
						
							| 266 | 251 265 155 | expne0d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 𝑚 ↑ 𝑀 )  ≠  0 ) | 
						
							| 267 | 264 266 | div0d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 0  /  ( 𝑚 ↑ 𝑀 ) )  =  0 ) | 
						
							| 268 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( 0 ... 𝑁 )  ∈  Fin ) | 
						
							| 269 |  | expcl | ⊢ ( ( 𝑚  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑚 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 270 | 251 24 269 | syl2an | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑚 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 271 | 152 270 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 272 | 268 264 271 266 | fsumdivc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ 𝑘 ) )  /  ( 𝑚 ↑ 𝑀 ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ 𝑘 ) )  /  ( 𝑚 ↑ 𝑀 ) ) ) | 
						
							| 273 | 262 267 272 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  0  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ 𝑘 ) )  /  ( 𝑚 ↑ 𝑀 ) ) ) | 
						
							| 274 |  | fvconst2g | ⊢ ( ( 0  ∈  ℂ  ∧  𝑚  ∈  ℕ )  →  ( ( ℕ  ×  { 0 } ) ‘ 𝑚 )  =  0 ) | 
						
							| 275 | 13 274 | sylan | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( ℕ  ×  { 0 } ) ‘ 𝑚 )  =  0 ) | 
						
							| 276 | 155 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 277 | 53 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 278 | 153 154 276 277 | expsubd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) )  =  ( ( 𝑚 ↑ 𝑘 )  /  ( 𝑚 ↑ 𝑀 ) ) ) | 
						
							| 279 | 278 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ ( 𝑘  −  𝑀 ) ) )  =  ( ( 𝐴 ‘ 𝑘 )  ·  ( ( 𝑚 ↑ 𝑘 )  /  ( 𝑚 ↑ 𝑀 ) ) ) ) | 
						
							| 280 | 264 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑚 ↑ 𝑀 )  ∈  ℂ ) | 
						
							| 281 | 266 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑚 ↑ 𝑀 )  ≠  0 ) | 
						
							| 282 | 152 270 280 281 | divassd | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ 𝑘 ) )  /  ( 𝑚 ↑ 𝑀 ) )  =  ( ( 𝐴 ‘ 𝑘 )  ·  ( ( 𝑚 ↑ 𝑘 )  /  ( 𝑚 ↑ 𝑀 ) ) ) ) | 
						
							| 283 | 279 150 282 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) ) ‘ 𝑚 )  =  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ 𝑘 ) )  /  ( 𝑚 ↑ 𝑀 ) ) ) | 
						
							| 284 | 283 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) ) ‘ 𝑚 )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑚 ↑ 𝑘 ) )  /  ( 𝑚 ↑ 𝑀 ) ) ) | 
						
							| 285 | 273 275 284 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ℕ )  →  ( ( ℕ  ×  { 0 } ) ‘ 𝑚 )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝑛  ∈  ℕ  ↦  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑛 ↑ ( 𝑘  −  𝑀 ) ) ) ) ‘ 𝑚 ) ) | 
						
							| 286 | 8 9 10 244 247 248 285 | climfsum | ⊢ ( 𝜑  →  ( ℕ  ×  { 0 } )  ⇝  Σ 𝑘  ∈  ( 0 ... 𝑁 ) if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 ) ) | 
						
							| 287 |  | suprleub | ⊢ ( ( ( ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ⊆  ℝ  ∧  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ≠  ∅  ∧  ∃ 𝑥  ∈  ℝ ∀ 𝑧  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) 𝑧  ≤  𝑥 )  ∧  𝑁  ∈  ℝ )  →  ( sup ( ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) ,  ℝ ,   <  )  ≤  𝑁  ↔  ∀ 𝑧  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) 𝑧  ≤  𝑁 ) ) | 
						
							| 288 | 197 7 78 58 287 | syl31anc | ⊢ ( 𝜑  →  ( sup ( ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) ,  ℝ ,   <  )  ≤  𝑁  ↔  ∀ 𝑧  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) 𝑧  ≤  𝑁 ) ) | 
						
							| 289 | 76 288 | mpbird | ⊢ ( 𝜑  →  sup ( ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) ,  ℝ ,   <  )  ≤  𝑁 ) | 
						
							| 290 | 6 289 | eqbrtrid | ⊢ ( 𝜑  →  𝑀  ≤  𝑁 ) | 
						
							| 291 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 292 | 82 291 | eleqtrdi | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 293 | 2 | nn0zd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 294 |  | elfz5 | ⊢ ( ( 𝑀  ∈  ( ℤ≥ ‘ 0 )  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ∈  ( 0 ... 𝑁 )  ↔  𝑀  ≤  𝑁 ) ) | 
						
							| 295 | 292 293 294 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( 0 ... 𝑁 )  ↔  𝑀  ≤  𝑁 ) ) | 
						
							| 296 | 290 295 | mpbird | ⊢ ( 𝜑  →  𝑀  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 297 | 296 | snssd | ⊢ ( 𝜑  →  { 𝑀 }  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 298 | 23 82 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑀 )  ∈  ℂ ) | 
						
							| 299 |  | elsni | ⊢ ( 𝑘  ∈  { 𝑀 }  →  𝑘  =  𝑀 ) | 
						
							| 300 | 299 | fveq2d | ⊢ ( 𝑘  ∈  { 𝑀 }  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑀 ) ) | 
						
							| 301 | 300 | eleq1d | ⊢ ( 𝑘  ∈  { 𝑀 }  →  ( ( 𝐴 ‘ 𝑘 )  ∈  ℂ  ↔  ( 𝐴 ‘ 𝑀 )  ∈  ℂ ) ) | 
						
							| 302 | 298 301 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝑘  ∈  { 𝑀 }  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) ) | 
						
							| 303 | 302 | ralrimiv | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  { 𝑀 } ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 304 | 10 | olcd | ⊢ ( 𝜑  →  ( ( 0 ... 𝑁 )  ⊆  ( ℤ≥ ‘ 0 )  ∨  ( 0 ... 𝑁 )  ∈  Fin ) ) | 
						
							| 305 |  | sumss2 | ⊢ ( ( ( { 𝑀 }  ⊆  ( 0 ... 𝑁 )  ∧  ∀ 𝑘  ∈  { 𝑀 } ( 𝐴 ‘ 𝑘 )  ∈  ℂ )  ∧  ( ( 0 ... 𝑁 )  ⊆  ( ℤ≥ ‘ 0 )  ∨  ( 0 ... 𝑁 )  ∈  Fin ) )  →  Σ 𝑘  ∈  { 𝑀 } ( 𝐴 ‘ 𝑘 )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 ) ) | 
						
							| 306 | 297 303 304 305 | syl21anc | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝑀 } ( 𝐴 ‘ 𝑘 )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 ) ) | 
						
							| 307 |  | ltso | ⊢  <   Or  ℝ | 
						
							| 308 | 307 | supex | ⊢ sup ( ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) ) ,  ℝ ,   <  )  ∈  V | 
						
							| 309 | 6 308 | eqeltri | ⊢ 𝑀  ∈  V | 
						
							| 310 |  | fveq2 | ⊢ ( 𝑘  =  𝑀  →  ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑀 ) ) | 
						
							| 311 | 310 | sumsn | ⊢ ( ( 𝑀  ∈  V  ∧  ( 𝐴 ‘ 𝑀 )  ∈  ℂ )  →  Σ 𝑘  ∈  { 𝑀 } ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑀 ) ) | 
						
							| 312 | 309 298 311 | sylancr | ⊢ ( 𝜑  →  Σ 𝑘  ∈  { 𝑀 } ( 𝐴 ‘ 𝑘 )  =  ( 𝐴 ‘ 𝑀 ) ) | 
						
							| 313 | 306 312 | eqtr3d | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 0 ... 𝑁 ) if ( 𝑘  ∈  { 𝑀 } ,  ( 𝐴 ‘ 𝑘 ) ,  0 )  =  ( 𝐴 ‘ 𝑀 ) ) | 
						
							| 314 | 286 313 | breqtrd | ⊢ ( 𝜑  →  ( ℕ  ×  { 0 } )  ⇝  ( 𝐴 ‘ 𝑀 ) ) | 
						
							| 315 | 240 32 | climconst2 | ⊢ ( ( 0  ∈  ℂ  ∧  1  ∈  ℤ )  →  ( ℕ  ×  { 0 } )  ⇝  0 ) | 
						
							| 316 | 12 239 315 | mp2an | ⊢ ( ℕ  ×  { 0 } )  ⇝  0 | 
						
							| 317 |  | climuni | ⊢ ( ( ( ℕ  ×  { 0 } )  ⇝  ( 𝐴 ‘ 𝑀 )  ∧  ( ℕ  ×  { 0 } )  ⇝  0 )  →  ( 𝐴 ‘ 𝑀 )  =  0 ) | 
						
							| 318 | 314 316 317 | sylancl | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑀 )  =  0 ) | 
						
							| 319 |  | fvex | ⊢ ( 𝐴 ‘ 𝑀 )  ∈  V | 
						
							| 320 | 319 | elsn | ⊢ ( ( 𝐴 ‘ 𝑀 )  ∈  { 0 }  ↔  ( 𝐴 ‘ 𝑀 )  =  0 ) | 
						
							| 321 | 318 320 | sylibr | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑀 )  ∈  { 0 } ) | 
						
							| 322 |  | elpreima | ⊢ ( 𝐴  Fn  ℕ0  →  ( 𝑀  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ↔  ( 𝑀  ∈  ℕ0  ∧  ( 𝐴 ‘ 𝑀 )  ∈  ( 𝑆  ∖  { 0 } ) ) ) ) | 
						
							| 323 | 59 322 | syl | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( ◡ 𝐴  “  ( 𝑆  ∖  { 0 } ) )  ↔  ( 𝑀  ∈  ℕ0  ∧  ( 𝐴 ‘ 𝑀 )  ∈  ( 𝑆  ∖  { 0 } ) ) ) ) | 
						
							| 324 | 81 323 | mpbid | ⊢ ( 𝜑  →  ( 𝑀  ∈  ℕ0  ∧  ( 𝐴 ‘ 𝑀 )  ∈  ( 𝑆  ∖  { 0 } ) ) ) | 
						
							| 325 | 324 | simprd | ⊢ ( 𝜑  →  ( 𝐴 ‘ 𝑀 )  ∈  ( 𝑆  ∖  { 0 } ) ) | 
						
							| 326 | 325 | eldifbd | ⊢ ( 𝜑  →  ¬  ( 𝐴 ‘ 𝑀 )  ∈  { 0 } ) | 
						
							| 327 | 321 326 | pm2.65i | ⊢ ¬  𝜑 |