Step |
Hyp |
Ref |
Expression |
1 |
|
plyeq0.1 |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
2 |
|
plyeq0.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
3 |
|
plyeq0.3 |
⊢ ( 𝜑 → 𝐴 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) |
4 |
|
plyeq0.4 |
⊢ ( 𝜑 → ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) |
5 |
|
plyeq0.5 |
⊢ ( 𝜑 → 0𝑝 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
6 |
|
plyeq0.6 |
⊢ 𝑀 = sup ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) , ℝ , < ) |
7 |
|
plyeq0.7 |
⊢ ( 𝜑 → ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ≠ ∅ ) |
8 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
9 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
10 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑁 ) ∈ Fin ) |
11 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → 1 ∈ ℤ ) |
12 |
|
0cn |
⊢ 0 ∈ ℂ |
13 |
12
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
14 |
13
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ ℂ ) |
15 |
1 14
|
unssd |
⊢ ( 𝜑 → ( 𝑆 ∪ { 0 } ) ⊆ ℂ ) |
16 |
|
cnex |
⊢ ℂ ∈ V |
17 |
|
ssexg |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ⊆ ℂ ∧ ℂ ∈ V ) → ( 𝑆 ∪ { 0 } ) ∈ V ) |
18 |
15 16 17
|
sylancl |
⊢ ( 𝜑 → ( 𝑆 ∪ { 0 } ) ∈ V ) |
19 |
|
nn0ex |
⊢ ℕ0 ∈ V |
20 |
|
elmapg |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ∈ V ∧ ℕ0 ∈ V ) → ( 𝐴 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ↔ 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) ) |
21 |
18 19 20
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ↔ 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) ) |
22 |
3 21
|
mpbid |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
23 |
22 15
|
fssd |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
24 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) |
25 |
|
ffvelrn |
⊢ ( ( 𝐴 : ℕ0 ⟶ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
26 |
23 24 25
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
28 |
27
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℝ ) |
29 |
28
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) |
30 |
|
divcnv |
⊢ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ → ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑛 ) ) ⇝ 0 ) |
31 |
29 30
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑛 ) ) ⇝ 0 ) |
32 |
|
nnex |
⊢ ℕ ∈ V |
33 |
32
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ∈ V |
34 |
33
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ∈ V ) |
35 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑛 ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑚 ) ) |
36 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑛 ) ) |
37 |
|
ovex |
⊢ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑚 ) ∈ V |
38 |
35 36 37
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑛 ) ) ‘ 𝑚 ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑚 ) ) |
39 |
38
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑛 ) ) ‘ 𝑚 ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑚 ) ) |
40 |
|
nndivre |
⊢ ( ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℝ ∧ 𝑚 ∈ ℕ ) → ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑚 ) ∈ ℝ ) |
41 |
28 40
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑚 ) ∈ ℝ ) |
42 |
39 41
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑛 ) ) ‘ 𝑚 ) ∈ ℝ ) |
43 |
|
oveq1 |
⊢ ( 𝑛 = 𝑚 → ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) = ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) |
44 |
43
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
45 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
46 |
|
ovex |
⊢ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ∈ V |
47 |
44 45 46
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
48 |
47
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
49 |
26
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
50 |
49
|
abscld |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℝ ) |
51 |
|
nnrp |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ+ ) |
52 |
51
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℝ+ ) |
53 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℤ ) |
54 |
|
cnvimass |
⊢ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ⊆ dom 𝐴 |
55 |
54 22
|
fssdm |
⊢ ( 𝜑 → ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ⊆ ℕ0 ) |
56 |
|
nn0ssz |
⊢ ℕ0 ⊆ ℤ |
57 |
55 56
|
sstrdi |
⊢ ( 𝜑 → ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ⊆ ℤ ) |
58 |
2
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
59 |
22
|
ffnd |
⊢ ( 𝜑 → 𝐴 Fn ℕ0 ) |
60 |
|
elpreima |
⊢ ( 𝐴 Fn ℕ0 → ( 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ↔ ( 𝑧 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑧 ) ∈ ( 𝑆 ∖ { 0 } ) ) ) ) |
61 |
59 60
|
syl |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ↔ ( 𝑧 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑧 ) ∈ ( 𝑆 ∖ { 0 } ) ) ) ) |
62 |
61
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ) → ( 𝐴 ‘ 𝑧 ) ∈ ( 𝑆 ∖ { 0 } ) ) |
63 |
|
eldifsni |
⊢ ( ( 𝐴 ‘ 𝑧 ) ∈ ( 𝑆 ∖ { 0 } ) → ( 𝐴 ‘ 𝑧 ) ≠ 0 ) |
64 |
62 63
|
syl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ) → ( 𝐴 ‘ 𝑧 ) ≠ 0 ) |
65 |
|
fveq2 |
⊢ ( 𝑘 = 𝑧 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑧 ) ) |
66 |
65
|
neeq1d |
⊢ ( 𝑘 = 𝑧 → ( ( 𝐴 ‘ 𝑘 ) ≠ 0 ↔ ( 𝐴 ‘ 𝑧 ) ≠ 0 ) ) |
67 |
|
breq1 |
⊢ ( 𝑘 = 𝑧 → ( 𝑘 ≤ 𝑁 ↔ 𝑧 ≤ 𝑁 ) ) |
68 |
66 67
|
imbi12d |
⊢ ( 𝑘 = 𝑧 → ( ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ↔ ( ( 𝐴 ‘ 𝑧 ) ≠ 0 → 𝑧 ≤ 𝑁 ) ) ) |
69 |
|
plyco0 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐴 : ℕ0 ⟶ ℂ ) → ( ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) ) |
70 |
2 23 69
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ↔ ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) ) |
71 |
4 70
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ) → ∀ 𝑘 ∈ ℕ0 ( ( 𝐴 ‘ 𝑘 ) ≠ 0 → 𝑘 ≤ 𝑁 ) ) |
73 |
55
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ) → 𝑧 ∈ ℕ0 ) |
74 |
68 72 73
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ) → ( ( 𝐴 ‘ 𝑧 ) ≠ 0 → 𝑧 ≤ 𝑁 ) ) |
75 |
64 74
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ) → 𝑧 ≤ 𝑁 ) |
76 |
75
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) 𝑧 ≤ 𝑁 ) |
77 |
|
brralrspcev |
⊢ ( ( 𝑁 ∈ ℝ ∧ ∀ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) 𝑧 ≤ 𝑁 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) 𝑧 ≤ 𝑥 ) |
78 |
58 76 77
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) 𝑧 ≤ 𝑥 ) |
79 |
|
suprzcl |
⊢ ( ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ⊆ ℤ ∧ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) 𝑧 ≤ 𝑥 ) → sup ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) , ℝ , < ) ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ) |
80 |
57 7 78 79
|
syl3anc |
⊢ ( 𝜑 → sup ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) , ℝ , < ) ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ) |
81 |
6 80
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ) |
82 |
55 81
|
sseldd |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
83 |
82
|
nn0zd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
84 |
|
zsubcl |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑘 − 𝑀 ) ∈ ℤ ) |
85 |
53 83 84
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑘 − 𝑀 ) ∈ ℤ ) |
86 |
85
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑘 − 𝑀 ) ∈ ℤ ) |
87 |
52 86
|
rpexpcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ∈ ℝ+ ) |
88 |
87
|
rpred |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ∈ ℝ ) |
89 |
50 88
|
remulcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ∈ ℝ ) |
90 |
48 89
|
eqeltrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) ∈ ℝ ) |
91 |
|
nnrecre |
⊢ ( 𝑚 ∈ ℕ → ( 1 / 𝑚 ) ∈ ℝ ) |
92 |
91
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 1 / 𝑚 ) ∈ ℝ ) |
93 |
27
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → 0 ≤ ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
94 |
93
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 0 ≤ ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ) |
95 |
|
nnre |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ ) |
96 |
95
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℝ ) |
97 |
|
nnge1 |
⊢ ( 𝑚 ∈ ℕ → 1 ≤ 𝑚 ) |
98 |
97
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 1 ≤ 𝑚 ) |
99 |
|
1red |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 1 ∈ ℝ ) |
100 |
86
|
zred |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑘 − 𝑀 ) ∈ ℝ ) |
101 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑘 < 𝑀 ) |
102 |
53
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℤ ) |
103 |
102
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑘 ∈ ℤ ) |
104 |
83
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
105 |
|
zltp1le |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑘 < 𝑀 ↔ ( 𝑘 + 1 ) ≤ 𝑀 ) ) |
106 |
103 104 105
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑘 < 𝑀 ↔ ( 𝑘 + 1 ) ≤ 𝑀 ) ) |
107 |
101 106
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑘 + 1 ) ≤ 𝑀 ) |
108 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
109 |
108
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℝ ) |
110 |
109
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑘 ∈ ℝ ) |
111 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑀 ∈ ℕ0 ) |
112 |
111
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑀 ∈ ℝ ) |
113 |
112
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑀 ∈ ℝ ) |
114 |
110 99 113
|
leaddsub2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑘 + 1 ) ≤ 𝑀 ↔ 1 ≤ ( 𝑀 − 𝑘 ) ) ) |
115 |
107 114
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 1 ≤ ( 𝑀 − 𝑘 ) ) |
116 |
109
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℂ ) |
117 |
116
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
118 |
112
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑀 ∈ ℂ ) |
119 |
118
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑀 ∈ ℂ ) |
120 |
117 119
|
negsubdi2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → - ( 𝑘 − 𝑀 ) = ( 𝑀 − 𝑘 ) ) |
121 |
115 120
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 1 ≤ - ( 𝑘 − 𝑀 ) ) |
122 |
99 100 121
|
lenegcon2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑘 − 𝑀 ) ≤ - 1 ) |
123 |
|
neg1z |
⊢ - 1 ∈ ℤ |
124 |
|
eluz |
⊢ ( ( ( 𝑘 − 𝑀 ) ∈ ℤ ∧ - 1 ∈ ℤ ) → ( - 1 ∈ ( ℤ≥ ‘ ( 𝑘 − 𝑀 ) ) ↔ ( 𝑘 − 𝑀 ) ≤ - 1 ) ) |
125 |
86 123 124
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( - 1 ∈ ( ℤ≥ ‘ ( 𝑘 − 𝑀 ) ) ↔ ( 𝑘 − 𝑀 ) ≤ - 1 ) ) |
126 |
122 125
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → - 1 ∈ ( ℤ≥ ‘ ( 𝑘 − 𝑀 ) ) ) |
127 |
96 98 126
|
leexp2ad |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ≤ ( 𝑚 ↑ - 1 ) ) |
128 |
|
nncn |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℂ ) |
129 |
128
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℂ ) |
130 |
|
expn1 |
⊢ ( 𝑚 ∈ ℂ → ( 𝑚 ↑ - 1 ) = ( 1 / 𝑚 ) ) |
131 |
129 130
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 ↑ - 1 ) = ( 1 / 𝑚 ) ) |
132 |
127 131
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ≤ ( 1 / 𝑚 ) ) |
133 |
88 92 50 94 132
|
lemul2ad |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ≤ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 1 / 𝑚 ) ) ) |
134 |
29
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) ∈ ℂ ) |
135 |
|
nnne0 |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ≠ 0 ) |
136 |
135
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 𝑚 ≠ 0 ) |
137 |
134 129 136
|
divrecd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑚 ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 1 / 𝑚 ) ) ) |
138 |
39 137
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑛 ) ) ‘ 𝑚 ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 1 / 𝑚 ) ) ) |
139 |
133 48 138
|
3brtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) / 𝑛 ) ) ‘ 𝑚 ) ) |
140 |
87
|
rpge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 0 ≤ ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) |
141 |
50 88 94 140
|
mulge0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 0 ≤ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
142 |
141 48
|
breqtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → 0 ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) ) |
143 |
8 11 31 34 42 90 139 142
|
climsqz2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ⇝ 0 ) |
144 |
32
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ∈ V |
145 |
144
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ∈ V ) |
146 |
43
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
147 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
148 |
|
ovex |
⊢ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ∈ V |
149 |
146 147 148
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
150 |
149
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
151 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐴 : ℕ0 ⟶ ℂ ) |
152 |
151 24 25
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
153 |
128
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑚 ∈ ℂ ) |
154 |
135
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑚 ≠ 0 ) |
155 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
156 |
53 155 84
|
syl2anr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑘 − 𝑀 ) ∈ ℤ ) |
157 |
153 154 156
|
expclzd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ∈ ℂ ) |
158 |
152 157
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ∈ ℂ ) |
159 |
150 158
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) ∈ ℂ ) |
160 |
159
|
an32s |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) ∈ ℂ ) |
161 |
160
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) ∈ ℂ ) |
162 |
88
|
recnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ∈ ℂ ) |
163 |
49 162
|
absmuld |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( abs ‘ ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) ) |
164 |
88 140
|
absidd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( abs ‘ ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) = ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) |
165 |
164
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( abs ‘ ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
166 |
163 165
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) = ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
167 |
149
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
168 |
167
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( abs ‘ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) ) = ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) ) ) |
169 |
166 168 48
|
3eqtr4rd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) = ( abs ‘ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) ) ) |
170 |
8 11 145 34 161 169
|
climabs0 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ⇝ 0 ↔ ( 𝑛 ∈ ℕ ↦ ( ( abs ‘ ( 𝐴 ‘ 𝑘 ) ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ⇝ 0 ) ) |
171 |
143 170
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ⇝ 0 ) |
172 |
109
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → 𝑘 ∈ ℝ ) |
173 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → 𝑘 < 𝑀 ) |
174 |
172 173
|
ltned |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → 𝑘 ≠ 𝑀 ) |
175 |
|
velsn |
⊢ ( 𝑘 ∈ { 𝑀 } ↔ 𝑘 = 𝑀 ) |
176 |
175
|
necon3bbii |
⊢ ( ¬ 𝑘 ∈ { 𝑀 } ↔ 𝑘 ≠ 𝑀 ) |
177 |
174 176
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ¬ 𝑘 ∈ { 𝑀 } ) |
178 |
177
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) = 0 ) |
179 |
171 178
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑘 < 𝑀 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ⇝ if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
180 |
|
nncn |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ ) |
181 |
180
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) = 0 ) → 𝑛 ∈ ℂ ) |
182 |
|
nnne0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) |
183 |
182
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) = 0 ) → 𝑛 ≠ 0 ) |
184 |
85
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) = 0 ) → ( 𝑘 − 𝑀 ) ∈ ℤ ) |
185 |
181 183 184
|
expclzd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) = 0 ) → ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ∈ ℂ ) |
186 |
185
|
mul02d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) = 0 ) → ( 0 · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) = 0 ) |
187 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) = 0 ) → ( 𝐴 ‘ 𝑘 ) = 0 ) |
188 |
187
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) = 0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) = ( 0 · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) |
189 |
187
|
ifeq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) = 0 ) → if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) = if ( 𝑘 ∈ { 𝑀 } , 0 , 0 ) ) |
190 |
|
ifid |
⊢ if ( 𝑘 ∈ { 𝑀 } , 0 , 0 ) = 0 |
191 |
189 190
|
eqtrdi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) = 0 ) → if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) = 0 ) |
192 |
186 188 191
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) = 0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) = if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
193 |
26
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
194 |
193
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
195 |
194
|
mulid1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( ( 𝐴 ‘ 𝑘 ) · 1 ) = ( 𝐴 ‘ 𝑘 ) ) |
196 |
|
nn0ssre |
⊢ ℕ0 ⊆ ℝ |
197 |
55 196
|
sstrdi |
⊢ ( 𝜑 → ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ⊆ ℝ ) |
198 |
197
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ⊆ ℝ ) |
199 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ≠ ∅ ) |
200 |
78
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) 𝑧 ≤ 𝑥 ) |
201 |
24
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑘 ∈ ℕ0 ) |
202 |
|
ffvelrn |
⊢ ( ( 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ( 𝑆 ∪ { 0 } ) ) |
203 |
22 24 202
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ( 𝑆 ∪ { 0 } ) ) |
204 |
203
|
anim1i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( ( 𝐴 ‘ 𝑘 ) ∈ ( 𝑆 ∪ { 0 } ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) |
205 |
|
eldifsn |
⊢ ( ( 𝐴 ‘ 𝑘 ) ∈ ( ( 𝑆 ∪ { 0 } ) ∖ { 0 } ) ↔ ( ( 𝐴 ‘ 𝑘 ) ∈ ( 𝑆 ∪ { 0 } ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) ) |
206 |
204 205
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ( ( 𝑆 ∪ { 0 } ) ∖ { 0 } ) ) |
207 |
|
difun2 |
⊢ ( ( 𝑆 ∪ { 0 } ) ∖ { 0 } ) = ( 𝑆 ∖ { 0 } ) |
208 |
206 207
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ( 𝑆 ∖ { 0 } ) ) |
209 |
|
elpreima |
⊢ ( 𝐴 Fn ℕ0 → ( 𝑘 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ↔ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ∈ ( 𝑆 ∖ { 0 } ) ) ) ) |
210 |
59 209
|
syl |
⊢ ( 𝜑 → ( 𝑘 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ↔ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ∈ ( 𝑆 ∖ { 0 } ) ) ) ) |
211 |
210
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝑘 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ↔ ( 𝑘 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑘 ) ∈ ( 𝑆 ∖ { 0 } ) ) ) ) |
212 |
201 208 211
|
mpbir2and |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑘 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ) |
213 |
198 199 200 212
|
suprubd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑘 ≤ sup ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) , ℝ , < ) ) |
214 |
213 6
|
breqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑘 ≤ 𝑀 ) |
215 |
214
|
ad4ant14 |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑘 ≤ 𝑀 ) |
216 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑀 ≤ 𝑘 ) |
217 |
109
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑘 ∈ ℝ ) |
218 |
112
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑀 ∈ ℝ ) |
219 |
217 218
|
letri3d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝑘 = 𝑀 ↔ ( 𝑘 ≤ 𝑀 ∧ 𝑀 ≤ 𝑘 ) ) ) |
220 |
215 216 219
|
mpbir2and |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑘 = 𝑀 ) |
221 |
220
|
oveq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝑘 − 𝑀 ) = ( 𝑀 − 𝑀 ) ) |
222 |
118
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑀 ∈ ℂ ) |
223 |
222
|
subidd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝑀 − 𝑀 ) = 0 ) |
224 |
221 223
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝑘 − 𝑀 ) = 0 ) |
225 |
224
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) = ( 𝑛 ↑ 0 ) ) |
226 |
180
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑛 ∈ ℂ ) |
227 |
226
|
exp0d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝑛 ↑ 0 ) = 1 ) |
228 |
225 227
|
eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) = 1 ) |
229 |
228
|
oveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) = ( ( 𝐴 ‘ 𝑘 ) · 1 ) ) |
230 |
220 175
|
sylibr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → 𝑘 ∈ { 𝑀 } ) |
231 |
230
|
iftrued |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) = ( 𝐴 ‘ 𝑘 ) ) |
232 |
195 229 231
|
3eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) ∧ ( 𝐴 ‘ 𝑘 ) ≠ 0 ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) = if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
233 |
192 232
|
pm2.61dane |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) = if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
234 |
233
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) ) |
235 |
|
fconstmpt |
⊢ ( ℕ × { if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) } ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
236 |
234 235
|
eqtr4di |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) = ( ℕ × { if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) } ) ) |
237 |
|
ifcl |
⊢ ( ( ( 𝐴 ‘ 𝑘 ) ∈ ℂ ∧ 0 ∈ ℂ ) → if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ∈ ℂ ) |
238 |
193 12 237
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) → if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ∈ ℂ ) |
239 |
|
1z |
⊢ 1 ∈ ℤ |
240 |
8
|
eqimss2i |
⊢ ( ℤ≥ ‘ 1 ) ⊆ ℕ |
241 |
240 32
|
climconst2 |
⊢ ( ( if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ∈ ℂ ∧ 1 ∈ ℤ ) → ( ℕ × { if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) } ) ⇝ if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
242 |
238 239 241
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) → ( ℕ × { if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) } ) ⇝ if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
243 |
236 242
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) ∧ 𝑀 ≤ 𝑘 ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ⇝ if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
244 |
179 243 109 112
|
ltlecasei |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ⇝ if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
245 |
|
snex |
⊢ { 0 } ∈ V |
246 |
32 245
|
xpex |
⊢ ( ℕ × { 0 } ) ∈ V |
247 |
246
|
a1i |
⊢ ( 𝜑 → ( ℕ × { 0 } ) ∈ V ) |
248 |
160
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ( 0 ... 𝑁 ) ∧ 𝑚 ∈ ℕ ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) ∈ ℂ ) |
249 |
5
|
fveq1d |
⊢ ( 𝜑 → ( 0𝑝 ‘ 𝑚 ) = ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑚 ) ) |
250 |
249
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 0𝑝 ‘ 𝑚 ) = ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑚 ) ) |
251 |
128
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℂ ) |
252 |
|
0pval |
⊢ ( 𝑚 ∈ ℂ → ( 0𝑝 ‘ 𝑚 ) = 0 ) |
253 |
251 252
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 0𝑝 ‘ 𝑚 ) = 0 ) |
254 |
|
oveq1 |
⊢ ( 𝑧 = 𝑚 → ( 𝑧 ↑ 𝑘 ) = ( 𝑚 ↑ 𝑘 ) ) |
255 |
254
|
oveq2d |
⊢ ( 𝑧 = 𝑚 → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) ) |
256 |
255
|
sumeq2sdv |
⊢ ( 𝑧 = 𝑚 → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) ) |
257 |
|
eqid |
⊢ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) |
258 |
|
sumex |
⊢ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) ∈ V |
259 |
256 257 258
|
fvmpt |
⊢ ( 𝑚 ∈ ℂ → ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑚 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) ) |
260 |
251 259
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ‘ 𝑚 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) ) |
261 |
250 253 260
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 0 = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) ) |
262 |
261
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 0 / ( 𝑚 ↑ 𝑀 ) ) = ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) / ( 𝑚 ↑ 𝑀 ) ) ) |
263 |
|
expcl |
⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑀 ∈ ℕ0 ) → ( 𝑚 ↑ 𝑀 ) ∈ ℂ ) |
264 |
128 82 263
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 ↑ 𝑀 ) ∈ ℂ ) |
265 |
135
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ≠ 0 ) |
266 |
251 265 155
|
expne0d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑚 ↑ 𝑀 ) ≠ 0 ) |
267 |
264 266
|
div0d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 0 / ( 𝑚 ↑ 𝑀 ) ) = 0 ) |
268 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 0 ... 𝑁 ) ∈ Fin ) |
269 |
|
expcl |
⊢ ( ( 𝑚 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑚 ↑ 𝑘 ) ∈ ℂ ) |
270 |
251 24 269
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑚 ↑ 𝑘 ) ∈ ℂ ) |
271 |
152 270
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) ∈ ℂ ) |
272 |
268 264 271 266
|
fsumdivc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) / ( 𝑚 ↑ 𝑀 ) ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) / ( 𝑚 ↑ 𝑀 ) ) ) |
273 |
262 267 272
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 0 = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) / ( 𝑚 ↑ 𝑀 ) ) ) |
274 |
|
fvconst2g |
⊢ ( ( 0 ∈ ℂ ∧ 𝑚 ∈ ℕ ) → ( ( ℕ × { 0 } ) ‘ 𝑚 ) = 0 ) |
275 |
13 274
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ℕ × { 0 } ) ‘ 𝑚 ) = 0 ) |
276 |
155
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑀 ∈ ℤ ) |
277 |
53
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℤ ) |
278 |
153 154 276 277
|
expsubd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) = ( ( 𝑚 ↑ 𝑘 ) / ( 𝑚 ↑ 𝑀 ) ) ) |
279 |
278
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ ( 𝑘 − 𝑀 ) ) ) = ( ( 𝐴 ‘ 𝑘 ) · ( ( 𝑚 ↑ 𝑘 ) / ( 𝑚 ↑ 𝑀 ) ) ) ) |
280 |
264
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑚 ↑ 𝑀 ) ∈ ℂ ) |
281 |
266
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑚 ↑ 𝑀 ) ≠ 0 ) |
282 |
152 270 280 281
|
divassd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) / ( 𝑚 ↑ 𝑀 ) ) = ( ( 𝐴 ‘ 𝑘 ) · ( ( 𝑚 ↑ 𝑘 ) / ( 𝑚 ↑ 𝑀 ) ) ) ) |
283 |
279 150 282
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) = ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) / ( 𝑚 ↑ 𝑀 ) ) ) |
284 |
283
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑘 ) · ( 𝑚 ↑ 𝑘 ) ) / ( 𝑚 ↑ 𝑀 ) ) ) |
285 |
273 275 284
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ℕ × { 0 } ) ‘ 𝑚 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑛 ∈ ℕ ↦ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑛 ↑ ( 𝑘 − 𝑀 ) ) ) ) ‘ 𝑚 ) ) |
286 |
8 9 10 244 247 248 285
|
climfsum |
⊢ ( 𝜑 → ( ℕ × { 0 } ) ⇝ Σ 𝑘 ∈ ( 0 ... 𝑁 ) if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
287 |
|
suprleub |
⊢ ( ( ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ⊆ ℝ ∧ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) 𝑧 ≤ 𝑥 ) ∧ 𝑁 ∈ ℝ ) → ( sup ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) , ℝ , < ) ≤ 𝑁 ↔ ∀ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) 𝑧 ≤ 𝑁 ) ) |
288 |
197 7 78 58 287
|
syl31anc |
⊢ ( 𝜑 → ( sup ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) , ℝ , < ) ≤ 𝑁 ↔ ∀ 𝑧 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) 𝑧 ≤ 𝑁 ) ) |
289 |
76 288
|
mpbird |
⊢ ( 𝜑 → sup ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) , ℝ , < ) ≤ 𝑁 ) |
290 |
6 289
|
eqbrtrid |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
291 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
292 |
82 291
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
293 |
2
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
294 |
|
elfz5 |
⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∈ ( 0 ... 𝑁 ) ↔ 𝑀 ≤ 𝑁 ) ) |
295 |
292 293 294
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 0 ... 𝑁 ) ↔ 𝑀 ≤ 𝑁 ) ) |
296 |
290 295
|
mpbird |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑁 ) ) |
297 |
296
|
snssd |
⊢ ( 𝜑 → { 𝑀 } ⊆ ( 0 ... 𝑁 ) ) |
298 |
23 82
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑀 ) ∈ ℂ ) |
299 |
|
elsni |
⊢ ( 𝑘 ∈ { 𝑀 } → 𝑘 = 𝑀 ) |
300 |
299
|
fveq2d |
⊢ ( 𝑘 ∈ { 𝑀 } → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑀 ) ) |
301 |
300
|
eleq1d |
⊢ ( 𝑘 ∈ { 𝑀 } → ( ( 𝐴 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐴 ‘ 𝑀 ) ∈ ℂ ) ) |
302 |
298 301
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑘 ∈ { 𝑀 } → ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) ) |
303 |
302
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑘 ∈ { 𝑀 } ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) |
304 |
10
|
olcd |
⊢ ( 𝜑 → ( ( 0 ... 𝑁 ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( 0 ... 𝑁 ) ∈ Fin ) ) |
305 |
|
sumss2 |
⊢ ( ( ( { 𝑀 } ⊆ ( 0 ... 𝑁 ) ∧ ∀ 𝑘 ∈ { 𝑀 } ( 𝐴 ‘ 𝑘 ) ∈ ℂ ) ∧ ( ( 0 ... 𝑁 ) ⊆ ( ℤ≥ ‘ 0 ) ∨ ( 0 ... 𝑁 ) ∈ Fin ) ) → Σ 𝑘 ∈ { 𝑀 } ( 𝐴 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
306 |
297 303 304 305
|
syl21anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑀 } ( 𝐴 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) ) |
307 |
|
ltso |
⊢ < Or ℝ |
308 |
307
|
supex |
⊢ sup ( ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) , ℝ , < ) ∈ V |
309 |
6 308
|
eqeltri |
⊢ 𝑀 ∈ V |
310 |
|
fveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑀 ) ) |
311 |
310
|
sumsn |
⊢ ( ( 𝑀 ∈ V ∧ ( 𝐴 ‘ 𝑀 ) ∈ ℂ ) → Σ 𝑘 ∈ { 𝑀 } ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑀 ) ) |
312 |
309 298 311
|
sylancr |
⊢ ( 𝜑 → Σ 𝑘 ∈ { 𝑀 } ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑀 ) ) |
313 |
306 312
|
eqtr3d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 𝑁 ) if ( 𝑘 ∈ { 𝑀 } , ( 𝐴 ‘ 𝑘 ) , 0 ) = ( 𝐴 ‘ 𝑀 ) ) |
314 |
286 313
|
breqtrd |
⊢ ( 𝜑 → ( ℕ × { 0 } ) ⇝ ( 𝐴 ‘ 𝑀 ) ) |
315 |
240 32
|
climconst2 |
⊢ ( ( 0 ∈ ℂ ∧ 1 ∈ ℤ ) → ( ℕ × { 0 } ) ⇝ 0 ) |
316 |
12 239 315
|
mp2an |
⊢ ( ℕ × { 0 } ) ⇝ 0 |
317 |
|
climuni |
⊢ ( ( ( ℕ × { 0 } ) ⇝ ( 𝐴 ‘ 𝑀 ) ∧ ( ℕ × { 0 } ) ⇝ 0 ) → ( 𝐴 ‘ 𝑀 ) = 0 ) |
318 |
314 316 317
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑀 ) = 0 ) |
319 |
|
fvex |
⊢ ( 𝐴 ‘ 𝑀 ) ∈ V |
320 |
319
|
elsn |
⊢ ( ( 𝐴 ‘ 𝑀 ) ∈ { 0 } ↔ ( 𝐴 ‘ 𝑀 ) = 0 ) |
321 |
318 320
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑀 ) ∈ { 0 } ) |
322 |
|
elpreima |
⊢ ( 𝐴 Fn ℕ0 → ( 𝑀 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ↔ ( 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ∈ ( 𝑆 ∖ { 0 } ) ) ) ) |
323 |
59 322
|
syl |
⊢ ( 𝜑 → ( 𝑀 ∈ ( ◡ 𝐴 “ ( 𝑆 ∖ { 0 } ) ) ↔ ( 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ∈ ( 𝑆 ∖ { 0 } ) ) ) ) |
324 |
81 323
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 ∈ ℕ0 ∧ ( 𝐴 ‘ 𝑀 ) ∈ ( 𝑆 ∖ { 0 } ) ) ) |
325 |
324
|
simprd |
⊢ ( 𝜑 → ( 𝐴 ‘ 𝑀 ) ∈ ( 𝑆 ∖ { 0 } ) ) |
326 |
325
|
eldifbd |
⊢ ( 𝜑 → ¬ ( 𝐴 ‘ 𝑀 ) ∈ { 0 } ) |
327 |
321 326
|
pm2.65i |
⊢ ¬ 𝜑 |