Step |
Hyp |
Ref |
Expression |
1 |
|
elply |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ↔ ( 𝑆 ⊆ ℂ ∧ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
2 |
1
|
simprbi |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
3 |
|
fzfid |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑧 ∈ ℂ ) → ( 0 ... 𝑛 ) ∈ Fin ) |
4 |
|
plybss |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝑆 ⊆ ℂ ) |
5 |
|
0cnd |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 0 ∈ ℂ ) |
6 |
5
|
snssd |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → { 0 } ⊆ ℂ ) |
7 |
4 6
|
unssd |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( 𝑆 ∪ { 0 } ) ⊆ ℂ ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑧 ∈ ℂ ) → ( 𝑆 ∪ { 0 } ) ⊆ ℂ ) |
9 |
8
|
adantr |
⊢ ( ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑆 ∪ { 0 } ) ⊆ ℂ ) |
10 |
|
simplrr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑧 ∈ ℂ ) → 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) |
11 |
|
cnex |
⊢ ℂ ∈ V |
12 |
|
ssexg |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ⊆ ℂ ∧ ℂ ∈ V ) → ( 𝑆 ∪ { 0 } ) ∈ V ) |
13 |
8 11 12
|
sylancl |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑧 ∈ ℂ ) → ( 𝑆 ∪ { 0 } ) ∈ V ) |
14 |
|
nn0ex |
⊢ ℕ0 ∈ V |
15 |
|
elmapg |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ∈ V ∧ ℕ0 ∈ V ) → ( 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ↔ 𝑎 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) ) |
16 |
13 14 15
|
sylancl |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑧 ∈ ℂ ) → ( 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ↔ 𝑎 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) ) |
17 |
10 16
|
mpbid |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑧 ∈ ℂ ) → 𝑎 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
18 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑛 ) → 𝑘 ∈ ℕ0 ) |
19 |
|
ffvelrn |
⊢ ( ( 𝑎 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑎 ‘ 𝑘 ) ∈ ( 𝑆 ∪ { 0 } ) ) |
20 |
17 18 19
|
syl2an |
⊢ ( ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑎 ‘ 𝑘 ) ∈ ( 𝑆 ∪ { 0 } ) ) |
21 |
9 20
|
sseldd |
⊢ ( ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑎 ‘ 𝑘 ) ∈ ℂ ) |
22 |
|
simpr |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑧 ∈ ℂ ) → 𝑧 ∈ ℂ ) |
23 |
|
expcl |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
24 |
22 18 23
|
syl2an |
⊢ ( ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑧 ↑ 𝑘 ) ∈ ℂ ) |
25 |
21 24
|
mulcld |
⊢ ( ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑧 ∈ ℂ ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
26 |
3 25
|
fsumcl |
⊢ ( ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) ∧ 𝑧 ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ∈ ℂ ) |
27 |
26
|
fmpttd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) : ℂ ⟶ ℂ ) |
28 |
|
feq1 |
⊢ ( 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) → ( 𝐹 : ℂ ⟶ ℂ ↔ ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) : ℂ ⟶ ℂ ) ) |
29 |
27 28
|
syl5ibrcom |
⊢ ( ( 𝐹 ∈ ( Poly ‘ 𝑆 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) ) → ( 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) → 𝐹 : ℂ ⟶ ℂ ) ) |
30 |
29
|
rexlimdvva |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → ( ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) → 𝐹 : ℂ ⟶ ℂ ) ) |
31 |
2 30
|
mpd |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 : ℂ ⟶ ℂ ) |