| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elply | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ↔  ( 𝑆  ⊆  ℂ  ∧  ∃ 𝑛  ∈  ℕ0 ∃ 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) 𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 2 | 1 | simprbi | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ∃ 𝑛  ∈  ℕ0 ∃ 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) 𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 3 |  | fzfid | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑧  ∈  ℂ )  →  ( 0 ... 𝑛 )  ∈  Fin ) | 
						
							| 4 |  | plybss | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝑆  ⊆  ℂ ) | 
						
							| 5 |  | 0cnd | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  0  ∈  ℂ ) | 
						
							| 6 | 5 | snssd | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  { 0 }  ⊆  ℂ ) | 
						
							| 7 | 4 6 | unssd | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( 𝑆  ∪  { 0 } )  ⊆  ℂ ) | 
						
							| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑧  ∈  ℂ )  →  ( 𝑆  ∪  { 0 } )  ⊆  ℂ ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑆  ∪  { 0 } )  ⊆  ℂ ) | 
						
							| 10 |  | simplrr | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑧  ∈  ℂ )  →  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) | 
						
							| 11 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 12 |  | ssexg | ⊢ ( ( ( 𝑆  ∪  { 0 } )  ⊆  ℂ  ∧  ℂ  ∈  V )  →  ( 𝑆  ∪  { 0 } )  ∈  V ) | 
						
							| 13 | 8 11 12 | sylancl | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑧  ∈  ℂ )  →  ( 𝑆  ∪  { 0 } )  ∈  V ) | 
						
							| 14 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 15 |  | elmapg | ⊢ ( ( ( 𝑆  ∪  { 0 } )  ∈  V  ∧  ℕ0  ∈  V )  →  ( 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ↔  𝑎 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 16 | 13 14 15 | sylancl | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑧  ∈  ℂ )  →  ( 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ↔  𝑎 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 17 | 10 16 | mpbid | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑧  ∈  ℂ )  →  𝑎 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } ) ) | 
						
							| 18 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑛 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 19 |  | ffvelcdm | ⊢ ( ( 𝑎 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑎 ‘ 𝑘 )  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 20 | 17 18 19 | syl2an | ⊢ ( ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑎 ‘ 𝑘 )  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 21 | 9 20 | sseldd | ⊢ ( ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑎 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 22 |  | simpr | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑧  ∈  ℂ )  →  𝑧  ∈  ℂ ) | 
						
							| 23 |  | expcl | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 24 | 22 18 23 | syl2an | ⊢ ( ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 25 | 21 24 | mulcld | ⊢ ( ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 26 | 3 25 | fsumcl | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 27 | 26 | fmpttd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) : ℂ ⟶ ℂ ) | 
						
							| 28 |  | feq1 | ⊢ ( 𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  →  ( 𝐹 : ℂ ⟶ ℂ  ↔  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) : ℂ ⟶ ℂ ) ) | 
						
							| 29 | 27 28 | syl5ibrcom | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  ( 𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  →  𝐹 : ℂ ⟶ ℂ ) ) | 
						
							| 30 | 29 | rexlimdvva | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ( ∃ 𝑛  ∈  ℕ0 ∃ 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) 𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  →  𝐹 : ℂ ⟶ ℂ ) ) | 
						
							| 31 | 2 30 | mpd | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐹 : ℂ ⟶ ℂ ) |