Metamath Proof Explorer


Theorem plyid

Description: The identity function is a polynomial. (Contributed by Mario Carneiro, 17-Jul-2014)

Ref Expression
Assertion plyid ( ( 𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ) → Xp ∈ ( Poly ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 mptresid ( I ↾ ℂ ) = ( 𝑧 ∈ ℂ ↦ 𝑧 )
2 df-idp Xp = ( I ↾ ℂ )
3 exp1 ( 𝑧 ∈ ℂ → ( 𝑧 ↑ 1 ) = 𝑧 )
4 3 mpteq2ia ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 1 ) ) = ( 𝑧 ∈ ℂ ↦ 𝑧 )
5 1 2 4 3eqtr4i Xp = ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 1 ) )
6 1nn0 1 ∈ ℕ0
7 plypow ( ( 𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ∧ 1 ∈ ℕ0 ) → ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 1 ) ) ∈ ( Poly ‘ 𝑆 ) )
8 6 7 mp3an3 ( ( 𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ) → ( 𝑧 ∈ ℂ ↦ ( 𝑧 ↑ 1 ) ) ∈ ( Poly ‘ 𝑆 ) )
9 5 8 eqeltrid ( ( 𝑆 ⊆ ℂ ∧ 1 ∈ 𝑆 ) → Xp ∈ ( Poly ‘ 𝑆 ) )