| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyadd.1 | ⊢ ( 𝜑  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 2 |  | plyadd.2 | ⊢ ( 𝜑  →  𝐺  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 3 |  | plyadd.3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 4 |  | plymul.4 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  ·  𝑦 )  ∈  𝑆 ) | 
						
							| 5 |  | elply2 | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ↔  ( 𝑆  ⊆  ℂ  ∧  ∃ 𝑚  ∈  ℕ0 ∃ 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) | 
						
							| 6 | 5 | simprbi | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  ∃ 𝑚  ∈  ℕ0 ∃ 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 7 | 1 6 | syl | ⊢ ( 𝜑  →  ∃ 𝑚  ∈  ℕ0 ∃ 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 8 |  | elply2 | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  ↔  ( 𝑆  ⊆  ℂ  ∧  ∃ 𝑛  ∈  ℕ0 ∃ 𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) | 
						
							| 9 | 8 | simprbi | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  ∃ 𝑛  ∈  ℕ0 ∃ 𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 10 | 2 9 | syl | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ0 ∃ 𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 11 |  | reeanv | ⊢ ( ∃ 𝑚  ∈  ℕ0 ∃ 𝑛  ∈  ℕ0 ( ∃ 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ∃ 𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) )  ↔  ( ∃ 𝑚  ∈  ℕ0 ∃ 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ∃ 𝑛  ∈  ℕ0 ∃ 𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) | 
						
							| 12 |  | reeanv | ⊢ ( ∃ 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ∃ 𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) )  ↔  ( ∃ 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ∃ 𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) | 
						
							| 13 |  | simp1l | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  ∧  ( 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  𝜑 ) | 
						
							| 14 | 13 1 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  ∧  ( 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 15 | 13 2 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  ∧  ( 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  𝐺  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 16 | 13 3 | sylan | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  ∧  ( 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 17 |  | simp1rl | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  ∧  ( 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  𝑚  ∈  ℕ0 ) | 
						
							| 18 |  | simp1rr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  ∧  ( 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 19 |  | simp2l | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  ∧  ( 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) | 
						
							| 20 |  | simp2r | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  ∧  ( 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) | 
						
							| 21 |  | simp3ll | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  ∧  ( 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 } ) | 
						
							| 22 |  | simp3rl | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  ∧  ( 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 } ) | 
						
							| 23 |  | simp3lr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  ∧  ( 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 24 |  | oveq1 | ⊢ ( 𝑧  =  𝑤  →  ( 𝑧 ↑ 𝑘 )  =  ( 𝑤 ↑ 𝑘 ) ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( 𝑧  =  𝑤  →  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑤 ↑ 𝑘 ) ) ) | 
						
							| 26 | 25 | sumeq2sdv | ⊢ ( 𝑧  =  𝑤  →  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑤 ↑ 𝑘 ) ) ) | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝑎 ‘ 𝑘 )  =  ( 𝑎 ‘ 𝑗 ) ) | 
						
							| 28 |  | oveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝑤 ↑ 𝑘 )  =  ( 𝑤 ↑ 𝑗 ) ) | 
						
							| 29 | 27 28 | oveq12d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑤 ↑ 𝑘 ) )  =  ( ( 𝑎 ‘ 𝑗 )  ·  ( 𝑤 ↑ 𝑗 ) ) ) | 
						
							| 30 | 29 | cbvsumv | ⊢ Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑤 ↑ 𝑘 ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑗 )  ·  ( 𝑤 ↑ 𝑗 ) ) | 
						
							| 31 | 26 30 | eqtrdi | ⊢ ( 𝑧  =  𝑤  →  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑗 )  ·  ( 𝑤 ↑ 𝑗 ) ) ) | 
						
							| 32 | 31 | cbvmptv | ⊢ ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( 𝑤  ∈  ℂ  ↦  Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑗 )  ·  ( 𝑤 ↑ 𝑗 ) ) ) | 
						
							| 33 | 23 32 | eqtrdi | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  ∧  ( 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  𝐹  =  ( 𝑤  ∈  ℂ  ↦  Σ 𝑗  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑗 )  ·  ( 𝑤 ↑ 𝑗 ) ) ) ) | 
						
							| 34 |  | simp3rr | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  ∧  ( 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 35 | 24 | oveq2d | ⊢ ( 𝑧  =  𝑤  →  ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑤 ↑ 𝑘 ) ) ) | 
						
							| 36 | 35 | sumeq2sdv | ⊢ ( 𝑧  =  𝑤  →  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑤 ↑ 𝑘 ) ) ) | 
						
							| 37 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝑏 ‘ 𝑘 )  =  ( 𝑏 ‘ 𝑗 ) ) | 
						
							| 38 | 37 28 | oveq12d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑤 ↑ 𝑘 ) )  =  ( ( 𝑏 ‘ 𝑗 )  ·  ( 𝑤 ↑ 𝑗 ) ) ) | 
						
							| 39 | 38 | cbvsumv | ⊢ Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑤 ↑ 𝑘 ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑗 )  ·  ( 𝑤 ↑ 𝑗 ) ) | 
						
							| 40 | 36 39 | eqtrdi | ⊢ ( 𝑧  =  𝑤  →  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  Σ 𝑗  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑗 )  ·  ( 𝑤 ↑ 𝑗 ) ) ) | 
						
							| 41 | 40 | cbvmptv | ⊢ ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( 𝑤  ∈  ℂ  ↦  Σ 𝑗  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑗 )  ·  ( 𝑤 ↑ 𝑗 ) ) ) | 
						
							| 42 | 34 41 | eqtrdi | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  ∧  ( 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  𝐺  =  ( 𝑤  ∈  ℂ  ↦  Σ 𝑗  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑗 )  ·  ( 𝑤 ↑ 𝑗 ) ) ) ) | 
						
							| 43 | 13 4 | sylan | ⊢ ( ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  ∧  ( 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  ·  𝑦 )  ∈  𝑆 ) | 
						
							| 44 | 14 15 16 17 18 19 20 21 22 33 42 43 | plymullem | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  ∧  ( 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) )  ∧  ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) )  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 45 | 44 | 3expia | ⊢ ( ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  ∧  ( 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ∧  𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  ( ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) )  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 46 | 45 | rexlimdvva | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  →  ( ∃ 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ∃ 𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ( ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) )  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 47 | 12 46 | biimtrrid | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  ℕ0  ∧  𝑛  ∈  ℕ0 ) )  →  ( ( ∃ 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ∃ 𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) )  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 48 | 47 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑚  ∈  ℕ0 ∃ 𝑛  ∈  ℕ0 ( ∃ 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ∃ 𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) )  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 49 | 11 48 | biimtrrid | ⊢ ( 𝜑  →  ( ( ∃ 𝑚  ∈  ℕ0 ∃ 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ( ( 𝑎  “  ( ℤ≥ ‘ ( 𝑚  +  1 ) ) )  =  { 0 }  ∧  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑚 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ∃ 𝑛  ∈  ℕ0 ∃ 𝑏  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ( ( 𝑏  “  ( ℤ≥ ‘ ( 𝑛  +  1 ) ) )  =  { 0 }  ∧  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑏 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) )  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 50 | 7 10 49 | mp2and | ⊢ ( 𝜑  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  ( Poly ‘ 𝑆 ) ) |