| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyadd.1 | ⊢ ( 𝜑  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 2 |  | plyadd.2 | ⊢ ( 𝜑  →  𝐺  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 3 |  | plyadd.3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 4 |  | plyadd.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 5 |  | plyadd.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 6 |  | plyadd.a | ⊢ ( 𝜑  →  𝐴  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) | 
						
							| 7 |  | plyadd.b | ⊢ ( 𝜑  →  𝐵  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) | 
						
							| 8 |  | plyadd.a2 | ⊢ ( 𝜑  →  ( 𝐴  “  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  =  { 0 } ) | 
						
							| 9 |  | plyadd.b2 | ⊢ ( 𝜑  →  ( 𝐵  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 } ) | 
						
							| 10 |  | plyadd.f | ⊢ ( 𝜑  →  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 11 |  | plyadd.g | ⊢ ( 𝜑  →  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 12 |  | plymul.x | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  ·  𝑦 )  ∈  𝑆 ) | 
						
							| 13 |  | plybss | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝑆  ⊆  ℂ ) | 
						
							| 14 | 1 13 | syl | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 15 |  | 0cnd | ⊢ ( 𝜑  →  0  ∈  ℂ ) | 
						
							| 16 | 15 | snssd | ⊢ ( 𝜑  →  { 0 }  ⊆  ℂ ) | 
						
							| 17 | 14 16 | unssd | ⊢ ( 𝜑  →  ( 𝑆  ∪  { 0 } )  ⊆  ℂ ) | 
						
							| 18 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 19 |  | ssexg | ⊢ ( ( ( 𝑆  ∪  { 0 } )  ⊆  ℂ  ∧  ℂ  ∈  V )  →  ( 𝑆  ∪  { 0 } )  ∈  V ) | 
						
							| 20 | 17 18 19 | sylancl | ⊢ ( 𝜑  →  ( 𝑆  ∪  { 0 } )  ∈  V ) | 
						
							| 21 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 22 |  | elmapg | ⊢ ( ( ( 𝑆  ∪  { 0 } )  ∈  V  ∧  ℕ0  ∈  V )  →  ( 𝐴  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ↔  𝐴 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 23 | 20 21 22 | sylancl | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ↔  𝐴 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 24 | 6 23 | mpbid | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } ) ) | 
						
							| 25 | 24 17 | fssd | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 26 |  | elmapg | ⊢ ( ( ( 𝑆  ∪  { 0 } )  ∈  V  ∧  ℕ0  ∈  V )  →  ( 𝐵  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ↔  𝐵 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 27 | 20 21 26 | sylancl | ⊢ ( 𝜑  →  ( 𝐵  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  ↔  𝐵 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 28 | 7 27 | mpbid | ⊢ ( 𝜑  →  𝐵 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } ) ) | 
						
							| 29 | 28 17 | fssd | ⊢ ( 𝜑  →  𝐵 : ℕ0 ⟶ ℂ ) | 
						
							| 30 | 1 2 4 5 25 29 8 9 10 11 | plymullem1 | ⊢ ( 𝜑  →  ( 𝐹  ∘f   ·  𝐺 )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ·  ( 𝑧 ↑ 𝑛 ) ) ) ) | 
						
							| 31 | 4 5 | nn0addcld | ⊢ ( 𝜑  →  ( 𝑀  +  𝑁 )  ∈  ℕ0 ) | 
						
							| 32 |  | eqid | ⊢ ( 𝑆  ∪  { 0 } )  =  ( 𝑆  ∪  { 0 } ) | 
						
							| 33 | 14 32 3 | un0addcl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑆  ∪  { 0 } )  ∧  𝑦  ∈  ( 𝑆  ∪  { 0 } ) ) )  →  ( 𝑥  +  𝑦 )  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 34 |  | fzfid | ⊢ ( 𝜑  →  ( 0 ... 𝑛 )  ∈  Fin ) | 
						
							| 35 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑛 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 36 |  | ffvelcdm | ⊢ ( ( 𝐴 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 37 | 24 35 36 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 38 |  | fznn0sub | ⊢ ( 𝑘  ∈  ( 0 ... 𝑛 )  →  ( 𝑛  −  𝑘 )  ∈  ℕ0 ) | 
						
							| 39 |  | ffvelcdm | ⊢ ( ( 𝐵 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } )  ∧  ( 𝑛  −  𝑘 )  ∈  ℕ0 )  →  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) )  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 40 | 28 38 39 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) )  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 41 | 37 40 | jca | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ( 𝐴 ‘ 𝑘 )  ∈  ( 𝑆  ∪  { 0 } )  ∧  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) )  ∈  ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 42 | 14 32 12 | un0mulcl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 𝑆  ∪  { 0 } )  ∧  𝑦  ∈  ( 𝑆  ∪  { 0 } ) ) )  →  ( 𝑥  ·  𝑦 )  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 43 | 42 | caovclg | ⊢ ( ( 𝜑  ∧  ( ( 𝐴 ‘ 𝑘 )  ∈  ( 𝑆  ∪  { 0 } )  ∧  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) )  ∈  ( 𝑆  ∪  { 0 } ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 44 | 41 43 | syldan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 45 |  | ssun2 | ⊢ { 0 }  ⊆  ( 𝑆  ∪  { 0 } ) | 
						
							| 46 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 47 | 46 | snss | ⊢ ( 0  ∈  ( 𝑆  ∪  { 0 } )  ↔  { 0 }  ⊆  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 48 | 45 47 | mpbir | ⊢ 0  ∈  ( 𝑆  ∪  { 0 } ) | 
						
							| 49 | 48 | a1i | ⊢ ( 𝜑  →  0  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 50 | 17 33 34 44 49 | fsumcllem | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  →  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ∈  ( 𝑆  ∪  { 0 } ) ) | 
						
							| 52 | 17 31 51 | elplyd | ⊢ ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ·  ( 𝑧 ↑ 𝑛 ) ) )  ∈  ( Poly ‘ ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 53 | 30 52 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  ( Poly ‘ ( 𝑆  ∪  { 0 } ) ) ) | 
						
							| 54 |  | plyun0 | ⊢ ( Poly ‘ ( 𝑆  ∪  { 0 } ) )  =  ( Poly ‘ 𝑆 ) | 
						
							| 55 | 53 54 | eleqtrdi | ⊢ ( 𝜑  →  ( 𝐹  ∘f   ·  𝐺 )  ∈  ( Poly ‘ 𝑆 ) ) |