Step |
Hyp |
Ref |
Expression |
1 |
|
plyadd.1 |
⊢ ( 𝜑 → 𝐹 ∈ ( Poly ‘ 𝑆 ) ) |
2 |
|
plyadd.2 |
⊢ ( 𝜑 → 𝐺 ∈ ( Poly ‘ 𝑆 ) ) |
3 |
|
plyadd.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
4 |
|
plyadd.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
5 |
|
plyadd.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
6 |
|
plyadd.a |
⊢ ( 𝜑 → 𝐴 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) |
7 |
|
plyadd.b |
⊢ ( 𝜑 → 𝐵 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) |
8 |
|
plyadd.a2 |
⊢ ( 𝜑 → ( 𝐴 “ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) = { 0 } ) |
9 |
|
plyadd.b2 |
⊢ ( 𝜑 → ( 𝐵 “ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = { 0 } ) |
10 |
|
plyadd.f |
⊢ ( 𝜑 → 𝐹 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
11 |
|
plyadd.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) |
12 |
|
plymul.x |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 ) |
13 |
|
plybss |
⊢ ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝑆 ⊆ ℂ ) |
14 |
1 13
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
15 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
16 |
15
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ ℂ ) |
17 |
14 16
|
unssd |
⊢ ( 𝜑 → ( 𝑆 ∪ { 0 } ) ⊆ ℂ ) |
18 |
|
cnex |
⊢ ℂ ∈ V |
19 |
|
ssexg |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ⊆ ℂ ∧ ℂ ∈ V ) → ( 𝑆 ∪ { 0 } ) ∈ V ) |
20 |
17 18 19
|
sylancl |
⊢ ( 𝜑 → ( 𝑆 ∪ { 0 } ) ∈ V ) |
21 |
|
nn0ex |
⊢ ℕ0 ∈ V |
22 |
|
elmapg |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ∈ V ∧ ℕ0 ∈ V ) → ( 𝐴 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ↔ 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) ) |
23 |
20 21 22
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ↔ 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) ) |
24 |
6 23
|
mpbid |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
25 |
24 17
|
fssd |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
26 |
|
elmapg |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ∈ V ∧ ℕ0 ∈ V ) → ( 𝐵 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ↔ 𝐵 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) ) |
27 |
20 21 26
|
sylancl |
⊢ ( 𝜑 → ( 𝐵 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ↔ 𝐵 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) ) |
28 |
7 27
|
mpbid |
⊢ ( 𝜑 → 𝐵 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ) |
29 |
28 17
|
fssd |
⊢ ( 𝜑 → 𝐵 : ℕ0 ⟶ ℂ ) |
30 |
1 2 4 5 25 29 8 9 10 11
|
plymullem1 |
⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) = ( 𝑧 ∈ ℂ ↦ Σ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) · ( 𝑧 ↑ 𝑛 ) ) ) ) |
31 |
4 5
|
nn0addcld |
⊢ ( 𝜑 → ( 𝑀 + 𝑁 ) ∈ ℕ0 ) |
32 |
|
eqid |
⊢ ( 𝑆 ∪ { 0 } ) = ( 𝑆 ∪ { 0 } ) |
33 |
14 32 3
|
un0addcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑆 ∪ { 0 } ) ∧ 𝑦 ∈ ( 𝑆 ∪ { 0 } ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( 𝑆 ∪ { 0 } ) ) |
34 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... 𝑛 ) ∈ Fin ) |
35 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑛 ) → 𝑘 ∈ ℕ0 ) |
36 |
|
ffvelrn |
⊢ ( ( 𝐴 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) ∈ ( 𝑆 ∪ { 0 } ) ) |
37 |
24 35 36
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐴 ‘ 𝑘 ) ∈ ( 𝑆 ∪ { 0 } ) ) |
38 |
|
fznn0sub |
⊢ ( 𝑘 ∈ ( 0 ... 𝑛 ) → ( 𝑛 − 𝑘 ) ∈ ℕ0 ) |
39 |
|
ffvelrn |
⊢ ( ( 𝐵 : ℕ0 ⟶ ( 𝑆 ∪ { 0 } ) ∧ ( 𝑛 − 𝑘 ) ∈ ℕ0 ) → ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ∈ ( 𝑆 ∪ { 0 } ) ) |
40 |
28 38 39
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ∈ ( 𝑆 ∪ { 0 } ) ) |
41 |
37 40
|
jca |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( 𝐴 ‘ 𝑘 ) ∈ ( 𝑆 ∪ { 0 } ) ∧ ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ∈ ( 𝑆 ∪ { 0 } ) ) ) |
42 |
14 32 12
|
un0mulcl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 𝑆 ∪ { 0 } ) ∧ 𝑦 ∈ ( 𝑆 ∪ { 0 } ) ) ) → ( 𝑥 · 𝑦 ) ∈ ( 𝑆 ∪ { 0 } ) ) |
43 |
42
|
caovclg |
⊢ ( ( 𝜑 ∧ ( ( 𝐴 ‘ 𝑘 ) ∈ ( 𝑆 ∪ { 0 } ) ∧ ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ∈ ( 𝑆 ∪ { 0 } ) ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) ∈ ( 𝑆 ∪ { 0 } ) ) |
44 |
41 43
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) ∈ ( 𝑆 ∪ { 0 } ) ) |
45 |
|
ssun2 |
⊢ { 0 } ⊆ ( 𝑆 ∪ { 0 } ) |
46 |
|
c0ex |
⊢ 0 ∈ V |
47 |
46
|
snss |
⊢ ( 0 ∈ ( 𝑆 ∪ { 0 } ) ↔ { 0 } ⊆ ( 𝑆 ∪ { 0 } ) ) |
48 |
45 47
|
mpbir |
⊢ 0 ∈ ( 𝑆 ∪ { 0 } ) |
49 |
48
|
a1i |
⊢ ( 𝜑 → 0 ∈ ( 𝑆 ∪ { 0 } ) ) |
50 |
17 33 34 44 49
|
fsumcllem |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) ∈ ( 𝑆 ∪ { 0 } ) ) |
51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ) → Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) ∈ ( 𝑆 ∪ { 0 } ) ) |
52 |
17 31 51
|
elplyd |
⊢ ( 𝜑 → ( 𝑧 ∈ ℂ ↦ Σ 𝑛 ∈ ( 0 ... ( 𝑀 + 𝑁 ) ) ( Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 ) · ( 𝐵 ‘ ( 𝑛 − 𝑘 ) ) ) · ( 𝑧 ↑ 𝑛 ) ) ) ∈ ( Poly ‘ ( 𝑆 ∪ { 0 } ) ) ) |
53 |
30 52
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) ∈ ( Poly ‘ ( 𝑆 ∪ { 0 } ) ) ) |
54 |
|
plyun0 |
⊢ ( Poly ‘ ( 𝑆 ∪ { 0 } ) ) = ( Poly ‘ 𝑆 ) |
55 |
53 54
|
eleqtrdi |
⊢ ( 𝜑 → ( 𝐹 ∘f · 𝐺 ) ∈ ( Poly ‘ 𝑆 ) ) |