| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyaddlem.1 | ⊢ ( 𝜑  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 2 |  | plyaddlem.2 | ⊢ ( 𝜑  →  𝐺  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 3 |  | plyaddlem.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 4 |  | plyaddlem.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 5 |  | plyaddlem.a | ⊢ ( 𝜑  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 6 |  | plyaddlem.b | ⊢ ( 𝜑  →  𝐵 : ℕ0 ⟶ ℂ ) | 
						
							| 7 |  | plyaddlem.a2 | ⊢ ( 𝜑  →  ( 𝐴  “  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  =  { 0 } ) | 
						
							| 8 |  | plyaddlem.b2 | ⊢ ( 𝜑  →  ( 𝐵  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 } ) | 
						
							| 9 |  | plyaddlem.f | ⊢ ( 𝜑  →  𝐹  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 10 |  | plyaddlem.g | ⊢ ( 𝜑  →  𝐺  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 11 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  ℂ  ∈  V ) | 
						
							| 13 |  | sumex | ⊢ Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  V | 
						
							| 14 | 13 | a1i | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  V ) | 
						
							| 15 |  | sumex | ⊢ Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  V | 
						
							| 16 | 15 | a1i | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  V ) | 
						
							| 17 | 12 14 16 9 10 | offval2 | ⊢ ( 𝜑  →  ( 𝐹  ∘f   ·  𝐺 )  =  ( 𝑧  ∈  ℂ  ↦  ( Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝐵 ‘ 𝑚 )  =  ( 𝐵 ‘ 𝑛 ) ) | 
						
							| 19 |  | oveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑧 ↑ 𝑚 )  =  ( 𝑧 ↑ 𝑛 ) ) | 
						
							| 20 | 18 19 | oveq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑧 ↑ 𝑚 ) )  =  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑧 ↑ 𝑚 ) ) )  =  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑚  =  ( 𝑛  −  𝑘 )  →  ( 𝐵 ‘ 𝑚 )  =  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) ) | 
						
							| 23 |  | oveq2 | ⊢ ( 𝑚  =  ( 𝑛  −  𝑘 )  →  ( 𝑧 ↑ 𝑚 )  =  ( 𝑧 ↑ ( 𝑛  −  𝑘 ) ) ) | 
						
							| 24 | 22 23 | oveq12d | ⊢ ( 𝑚  =  ( 𝑛  −  𝑘 )  →  ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑧 ↑ 𝑚 ) )  =  ( ( 𝐵 ‘ ( 𝑛  −  𝑘 ) )  ·  ( 𝑧 ↑ ( 𝑛  −  𝑘 ) ) ) ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( 𝑚  =  ( 𝑛  −  𝑘 )  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑚 )  ·  ( 𝑧 ↑ 𝑚 ) ) )  =  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ ( 𝑛  −  𝑘 ) )  ·  ( 𝑧 ↑ ( 𝑛  −  𝑘 ) ) ) ) ) | 
						
							| 26 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 27 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  𝐴 : ℕ0 ⟶ ℂ ) | 
						
							| 28 | 27 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 29 |  | expcl | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 30 | 29 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 31 | 28 30 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 32 | 26 31 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 33 |  | elfznn0 | ⊢ ( 𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 34 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  𝐵 : ℕ0 ⟶ ℂ ) | 
						
							| 35 | 34 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝐵 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 36 |  | expcl | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑧 ↑ 𝑛 )  ∈  ℂ ) | 
						
							| 37 | 36 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑧 ↑ 𝑛 )  ∈  ℂ ) | 
						
							| 38 | 35 37 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) )  ∈  ℂ ) | 
						
							| 39 | 33 38 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) )  →  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) )  ∈  ℂ ) | 
						
							| 40 | 32 39 | anim12dan | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  ( 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) )  ∧  𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) ) )  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ  ∧  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) )  ∈  ℂ ) ) | 
						
							| 41 |  | mulcl | ⊢ ( ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ  ∧  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) )  ∈  ℂ )  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) )  ∈  ℂ ) | 
						
							| 42 | 40 41 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  ( 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) )  ∧  𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) ) )  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) )  ∈  ℂ ) | 
						
							| 43 | 21 25 42 | fsum0diag2 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) Σ 𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) )  =  Σ 𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ ( 𝑛  −  𝑘 ) )  ·  ( 𝑧 ↑ ( 𝑛  −  𝑘 ) ) ) ) ) | 
						
							| 44 | 3 | nn0cnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 45 | 44 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  𝑀  ∈  ℂ ) | 
						
							| 46 | 4 | nn0cnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 47 | 46 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  𝑁  ∈  ℂ ) | 
						
							| 48 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑀 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 50 | 49 | nn0cnd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  𝑘  ∈  ℂ ) | 
						
							| 51 | 45 47 50 | addsubd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑀  +  𝑁 )  −  𝑘 )  =  ( ( 𝑀  −  𝑘 )  +  𝑁 ) ) | 
						
							| 52 |  | fznn0sub | ⊢ ( 𝑘  ∈  ( 0 ... 𝑀 )  →  ( 𝑀  −  𝑘 )  ∈  ℕ0 ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑀  −  𝑘 )  ∈  ℕ0 ) | 
						
							| 54 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 55 | 53 54 | eleqtrdi | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 𝑀  −  𝑘 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 56 | 4 | nn0zd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 57 | 56 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 58 |  | eluzadd | ⊢ ( ( ( 𝑀  −  𝑘 )  ∈  ( ℤ≥ ‘ 0 )  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑀  −  𝑘 )  +  𝑁 )  ∈  ( ℤ≥ ‘ ( 0  +  𝑁 ) ) ) | 
						
							| 59 | 55 57 58 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑀  −  𝑘 )  +  𝑁 )  ∈  ( ℤ≥ ‘ ( 0  +  𝑁 ) ) ) | 
						
							| 60 | 51 59 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑀  +  𝑁 )  −  𝑘 )  ∈  ( ℤ≥ ‘ ( 0  +  𝑁 ) ) ) | 
						
							| 61 | 47 | addlidd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 0  +  𝑁 )  =  𝑁 ) | 
						
							| 62 | 61 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( ℤ≥ ‘ ( 0  +  𝑁 ) )  =  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 63 | 60 62 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝑀  +  𝑁 )  −  𝑘 )  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 64 |  | fzss2 | ⊢ ( ( ( 𝑀  +  𝑁 )  −  𝑘 )  ∈  ( ℤ≥ ‘ 𝑁 )  →  ( 0 ... 𝑁 )  ⊆  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) ) | 
						
							| 65 | 63 64 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 0 ... 𝑁 )  ⊆  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) ) | 
						
							| 66 | 48 31 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 68 |  | elfznn0 | ⊢ ( 𝑛  ∈  ( 0 ... 𝑁 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 69 | 68 38 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) )  ∈  ℂ ) | 
						
							| 70 | 69 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) )  ∈  ℂ ) | 
						
							| 71 | 67 70 | mulcld | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( 0 ... 𝑁 ) )  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) )  ∈  ℂ ) | 
						
							| 72 |  | eldifn | ⊢ ( 𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) )  →  ¬  𝑛  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 73 | 72 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ¬  𝑛  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 74 |  | eldifi | ⊢ ( 𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) )  →  𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) ) | 
						
							| 75 | 74 33 | syl | ⊢ ( 𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 76 | 75 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 77 |  | peano2nn0 | ⊢ ( 𝑁  ∈  ℕ0  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 78 | 4 77 | syl | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ℕ0 ) | 
						
							| 79 | 78 54 | eleqtrdi | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 80 |  | uzsplit | ⊢ ( ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 0 )  →  ( ℤ≥ ‘ 0 )  =  ( ( 0 ... ( ( 𝑁  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 81 | 79 80 | syl | ⊢ ( 𝜑  →  ( ℤ≥ ‘ 0 )  =  ( ( 0 ... ( ( 𝑁  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 82 | 54 81 | eqtrid | ⊢ ( 𝜑  →  ℕ0  =  ( ( 0 ... ( ( 𝑁  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 83 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 84 |  | pncan | ⊢ ( ( 𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 85 | 46 83 84 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 86 | 85 | oveq2d | ⊢ ( 𝜑  →  ( 0 ... ( ( 𝑁  +  1 )  −  1 ) )  =  ( 0 ... 𝑁 ) ) | 
						
							| 87 | 86 | uneq1d | ⊢ ( 𝜑  →  ( ( 0 ... ( ( 𝑁  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  ( ( 0 ... 𝑁 )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 88 | 82 87 | eqtrd | ⊢ ( 𝜑  →  ℕ0  =  ( ( 0 ... 𝑁 )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 89 | 88 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ℕ0  =  ( ( 0 ... 𝑁 )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 90 | 76 89 | eleqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  𝑛  ∈  ( ( 0 ... 𝑁 )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 91 |  | elun | ⊢ ( 𝑛  ∈  ( ( 0 ... 𝑁 )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  ↔  ( 𝑛  ∈  ( 0 ... 𝑁 )  ∨  𝑛  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 92 | 90 91 | sylib | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( 𝑛  ∈  ( 0 ... 𝑁 )  ∨  𝑛  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 93 | 92 | ord | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( ¬  𝑛  ∈  ( 0 ... 𝑁 )  →  𝑛  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 94 | 73 93 | mpd | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  𝑛  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 95 | 6 | ffund | ⊢ ( 𝜑  →  Fun  𝐵 ) | 
						
							| 96 |  | ssun2 | ⊢ ( ℤ≥ ‘ ( 𝑁  +  1 ) )  ⊆  ( ( 0 ... ( ( 𝑁  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 97 | 96 82 | sseqtrrid | ⊢ ( 𝜑  →  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  ⊆  ℕ0 ) | 
						
							| 98 | 6 | fdmd | ⊢ ( 𝜑  →  dom  𝐵  =  ℕ0 ) | 
						
							| 99 | 97 98 | sseqtrrd | ⊢ ( 𝜑  →  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  ⊆  dom  𝐵 ) | 
						
							| 100 |  | funfvima2 | ⊢ ( ( Fun  𝐵  ∧  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  ⊆  dom  𝐵 )  →  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  →  ( 𝐵 ‘ 𝑛 )  ∈  ( 𝐵  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 101 | 95 99 100 | syl2anc | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  →  ( 𝐵 ‘ 𝑛 )  ∈  ( 𝐵  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 102 | 101 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  →  ( 𝐵 ‘ 𝑛 )  ∈  ( 𝐵  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) ) | 
						
							| 103 | 94 102 | mpd | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( 𝐵 ‘ 𝑛 )  ∈  ( 𝐵  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 104 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( 𝐵  “  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  =  { 0 } ) | 
						
							| 105 | 103 104 | eleqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( 𝐵 ‘ 𝑛 )  ∈  { 0 } ) | 
						
							| 106 |  | elsni | ⊢ ( ( 𝐵 ‘ 𝑛 )  ∈  { 0 }  →  ( 𝐵 ‘ 𝑛 )  =  0 ) | 
						
							| 107 | 105 106 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( 𝐵 ‘ 𝑛 )  =  0 ) | 
						
							| 108 | 107 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) )  =  ( 0  ·  ( 𝑧 ↑ 𝑛 ) ) ) | 
						
							| 109 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  𝑧  ∈  ℂ ) | 
						
							| 110 | 109 75 36 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( 𝑧 ↑ 𝑛 )  ∈  ℂ ) | 
						
							| 111 | 110 | mul02d | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( 0  ·  ( 𝑧 ↑ 𝑛 ) )  =  0 ) | 
						
							| 112 | 108 111 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) )  =  0 ) | 
						
							| 113 | 112 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) )  =  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  0 ) ) | 
						
							| 114 | 66 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 115 | 114 | mul01d | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  0 )  =  0 ) | 
						
							| 116 | 113 115 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∖  ( 0 ... 𝑁 ) ) )  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) )  =  0 ) | 
						
							| 117 |  | fzfid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∈  Fin ) | 
						
							| 118 | 65 71 116 117 | fsumss | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  Σ 𝑛  ∈  ( 0 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) )  =  Σ 𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) ) | 
						
							| 119 | 118 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 𝑀 ) Σ 𝑛  ∈  ( 0 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑀 ) Σ 𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) ) | 
						
							| 120 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( 0 ... 𝑀 )  ∈  Fin ) | 
						
							| 121 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( 0 ... 𝑁 )  ∈  Fin ) | 
						
							| 122 | 120 121 66 69 | fsum2mul | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 𝑀 ) Σ 𝑛  ∈  ( 0 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) )  =  ( Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  Σ 𝑛  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) ) | 
						
							| 123 | 44 46 | addcomd | ⊢ ( 𝜑  →  ( 𝑀  +  𝑁 )  =  ( 𝑁  +  𝑀 ) ) | 
						
							| 124 | 4 54 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 125 | 3 | nn0zd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 126 |  | eluzadd | ⊢ ( ( 𝑁  ∈  ( ℤ≥ ‘ 0 )  ∧  𝑀  ∈  ℤ )  →  ( 𝑁  +  𝑀 )  ∈  ( ℤ≥ ‘ ( 0  +  𝑀 ) ) ) | 
						
							| 127 | 124 125 126 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁  +  𝑀 )  ∈  ( ℤ≥ ‘ ( 0  +  𝑀 ) ) ) | 
						
							| 128 | 44 | addlidd | ⊢ ( 𝜑  →  ( 0  +  𝑀 )  =  𝑀 ) | 
						
							| 129 | 128 | fveq2d | ⊢ ( 𝜑  →  ( ℤ≥ ‘ ( 0  +  𝑀 ) )  =  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 130 | 127 129 | eleqtrd | ⊢ ( 𝜑  →  ( 𝑁  +  𝑀 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 131 | 123 130 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 132 |  | fzss2 | ⊢ ( ( 𝑀  +  𝑁 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 0 ... 𝑀 )  ⊆  ( 0 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 133 | 131 132 | syl | ⊢ ( 𝜑  →  ( 0 ... 𝑀 )  ⊆  ( 0 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 134 | 133 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( 0 ... 𝑀 )  ⊆  ( 0 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 135 | 66 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 136 | 39 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) )  →  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) )  ∈  ℂ ) | 
						
							| 137 | 135 136 | mulcld | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  ∧  𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) )  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) )  ∈  ℂ ) | 
						
							| 138 | 117 137 | fsumcl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑀 ) )  →  Σ 𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) )  ∈  ℂ ) | 
						
							| 139 |  | eldifn | ⊢ ( 𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) )  →  ¬  𝑘  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 140 | 139 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ¬  𝑘  ∈  ( 0 ... 𝑀 ) ) | 
						
							| 141 |  | eldifi | ⊢ ( 𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) )  →  𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ) | 
						
							| 142 | 141 26 | syl | ⊢ ( 𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 143 | 142 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 144 |  | peano2nn0 | ⊢ ( 𝑀  ∈  ℕ0  →  ( 𝑀  +  1 )  ∈  ℕ0 ) | 
						
							| 145 | 3 144 | syl | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ℕ0 ) | 
						
							| 146 | 145 54 | eleqtrdi | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 147 |  | uzsplit | ⊢ ( ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ 0 )  →  ( ℤ≥ ‘ 0 )  =  ( ( 0 ... ( ( 𝑀  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 148 | 146 147 | syl | ⊢ ( 𝜑  →  ( ℤ≥ ‘ 0 )  =  ( ( 0 ... ( ( 𝑀  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 149 | 54 148 | eqtrid | ⊢ ( 𝜑  →  ℕ0  =  ( ( 0 ... ( ( 𝑀  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 150 |  | pncan | ⊢ ( ( 𝑀  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑀  +  1 )  −  1 )  =  𝑀 ) | 
						
							| 151 | 44 83 150 | sylancl | ⊢ ( 𝜑  →  ( ( 𝑀  +  1 )  −  1 )  =  𝑀 ) | 
						
							| 152 | 151 | oveq2d | ⊢ ( 𝜑  →  ( 0 ... ( ( 𝑀  +  1 )  −  1 ) )  =  ( 0 ... 𝑀 ) ) | 
						
							| 153 | 152 | uneq1d | ⊢ ( 𝜑  →  ( ( 0 ... ( ( 𝑀  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  =  ( ( 0 ... 𝑀 )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 154 | 149 153 | eqtrd | ⊢ ( 𝜑  →  ℕ0  =  ( ( 0 ... 𝑀 )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 155 | 154 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ℕ0  =  ( ( 0 ... 𝑀 )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 156 | 143 155 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  𝑘  ∈  ( ( 0 ... 𝑀 )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 157 |  | elun | ⊢ ( 𝑘  ∈  ( ( 0 ... 𝑀 )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  ↔  ( 𝑘  ∈  ( 0 ... 𝑀 )  ∨  𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 158 | 156 157 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( 𝑘  ∈  ( 0 ... 𝑀 )  ∨  𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 159 | 158 | ord | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( ¬  𝑘  ∈  ( 0 ... 𝑀 )  →  𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 160 | 140 159 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 161 | 5 | ffund | ⊢ ( 𝜑  →  Fun  𝐴 ) | 
						
							| 162 |  | ssun2 | ⊢ ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ⊆  ( ( 0 ... ( ( 𝑀  +  1 )  −  1 ) )  ∪  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 163 | 162 149 | sseqtrrid | ⊢ ( 𝜑  →  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ⊆  ℕ0 ) | 
						
							| 164 | 5 | fdmd | ⊢ ( 𝜑  →  dom  𝐴  =  ℕ0 ) | 
						
							| 165 | 163 164 | sseqtrrd | ⊢ ( 𝜑  →  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ⊆  dom  𝐴 ) | 
						
							| 166 |  | funfvima2 | ⊢ ( ( Fun  𝐴  ∧  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ⊆  dom  𝐴 )  →  ( 𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ( 𝐴  “  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 167 | 161 165 166 | syl2anc | ⊢ ( 𝜑  →  ( 𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ( 𝐴  “  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 168 | 167 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( 𝑘  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ( 𝐴  “  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 169 | 160 168 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ( 𝐴  “  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 170 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( 𝐴  “  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) )  =  { 0 } ) | 
						
							| 171 | 169 170 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  { 0 } ) | 
						
							| 172 |  | elsni | ⊢ ( ( 𝐴 ‘ 𝑘 )  ∈  { 0 }  →  ( 𝐴 ‘ 𝑘 )  =  0 ) | 
						
							| 173 | 171 172 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( 𝐴 ‘ 𝑘 )  =  0 ) | 
						
							| 174 | 173 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( 0  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 175 | 142 30 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 176 | 175 | mul02d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( 0  ·  ( 𝑧 ↑ 𝑘 ) )  =  0 ) | 
						
							| 177 | 174 176 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  0 ) | 
						
							| 178 | 177 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  ∧  𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  0 ) | 
						
							| 179 | 178 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  ∧  𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) )  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) )  =  ( 0  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) ) | 
						
							| 180 | 39 | adantlr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  ∧  𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) )  →  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) )  ∈  ℂ ) | 
						
							| 181 | 180 | mul02d | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  ∧  𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) )  →  ( 0  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) )  =  0 ) | 
						
							| 182 | 179 181 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  ∧  𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) )  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) )  =  0 ) | 
						
							| 183 | 182 | sumeq2dv | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  Σ 𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) )  =  Σ 𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) 0 ) | 
						
							| 184 |  | fzfid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∈  Fin ) | 
						
							| 185 | 184 | olcd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ⊆  ( ℤ≥ ‘ 0 )  ∨  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∈  Fin ) ) | 
						
							| 186 |  | sumz | ⊢ ( ( ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ⊆  ( ℤ≥ ‘ 0 )  ∨  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) )  ∈  Fin )  →  Σ 𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) 0  =  0 ) | 
						
							| 187 | 185 186 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  Σ 𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) 0  =  0 ) | 
						
							| 188 | 183 187 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ( 0 ... ( 𝑀  +  𝑁 ) )  ∖  ( 0 ... 𝑀 ) ) )  →  Σ 𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) )  =  0 ) | 
						
							| 189 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( 0 ... ( 𝑀  +  𝑁 ) )  ∈  Fin ) | 
						
							| 190 | 134 138 188 189 | fsumss | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 𝑀 ) Σ 𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) )  =  Σ 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) Σ 𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) ) | 
						
							| 191 | 119 122 190 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  ( Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  Σ 𝑛  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) )  =  Σ 𝑘  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) Σ 𝑛  ∈  ( 0 ... ( ( 𝑀  +  𝑁 )  −  𝑘 ) ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) ) | 
						
							| 192 |  | fzfid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  →  ( 0 ... 𝑛 )  ∈  Fin ) | 
						
							| 193 |  | elfznn0 | ⊢ ( 𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 194 | 193 37 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  →  ( 𝑧 ↑ 𝑛 )  ∈  ℂ ) | 
						
							| 195 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  →  𝜑 ) | 
						
							| 196 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑛 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 197 | 5 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 198 | 195 196 197 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝐴 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 199 |  | fznn0sub | ⊢ ( 𝑘  ∈  ( 0 ... 𝑛 )  →  ( 𝑛  −  𝑘 )  ∈  ℕ0 ) | 
						
							| 200 | 6 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  ( 𝑛  −  𝑘 )  ∈  ℕ0 )  →  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) )  ∈  ℂ ) | 
						
							| 201 | 195 199 200 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) )  ∈  ℂ ) | 
						
							| 202 | 198 201 | mulcld | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ∈  ℂ ) | 
						
							| 203 | 192 194 202 | fsummulc1 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  →  ( Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ·  ( 𝑧 ↑ 𝑛 ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ·  ( 𝑧 ↑ 𝑛 ) ) ) | 
						
							| 204 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  →  𝑧  ∈  ℂ ) | 
						
							| 205 | 204 196 29 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 206 |  | expcl | ⊢ ( ( 𝑧  ∈  ℂ  ∧  ( 𝑛  −  𝑘 )  ∈  ℕ0 )  →  ( 𝑧 ↑ ( 𝑛  −  𝑘 ) )  ∈  ℂ ) | 
						
							| 207 | 204 199 206 | syl2an | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑧 ↑ ( 𝑛  −  𝑘 ) )  ∈  ℂ ) | 
						
							| 208 | 198 205 201 207 | mul4d | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ ( 𝑛  −  𝑘 ) )  ·  ( 𝑧 ↑ ( 𝑛  −  𝑘 ) ) ) )  =  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ·  ( ( 𝑧 ↑ 𝑘 )  ·  ( 𝑧 ↑ ( 𝑛  −  𝑘 ) ) ) ) ) | 
						
							| 209 | 204 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  𝑧  ∈  ℂ ) | 
						
							| 210 | 199 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑛  −  𝑘 )  ∈  ℕ0 ) | 
						
							| 211 | 196 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 212 | 209 210 211 | expaddd | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑧 ↑ ( 𝑘  +  ( 𝑛  −  𝑘 ) ) )  =  ( ( 𝑧 ↑ 𝑘 )  ·  ( 𝑧 ↑ ( 𝑛  −  𝑘 ) ) ) ) | 
						
							| 213 | 211 | nn0cnd | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  𝑘  ∈  ℂ ) | 
						
							| 214 | 193 | ad2antlr | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 215 | 214 | nn0cnd | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  𝑛  ∈  ℂ ) | 
						
							| 216 | 213 215 | pncan3d | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑘  +  ( 𝑛  −  𝑘 ) )  =  𝑛 ) | 
						
							| 217 | 216 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑧 ↑ ( 𝑘  +  ( 𝑛  −  𝑘 ) ) )  =  ( 𝑧 ↑ 𝑛 ) ) | 
						
							| 218 | 212 217 | eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ( 𝑧 ↑ 𝑘 )  ·  ( 𝑧 ↑ ( 𝑛  −  𝑘 ) ) )  =  ( 𝑧 ↑ 𝑛 ) ) | 
						
							| 219 | 218 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ·  ( ( 𝑧 ↑ 𝑘 )  ·  ( 𝑧 ↑ ( 𝑛  −  𝑘 ) ) ) )  =  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ·  ( 𝑧 ↑ 𝑛 ) ) ) | 
						
							| 220 | 208 219 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ ( 𝑛  −  𝑘 ) )  ·  ( 𝑧 ↑ ( 𝑛  −  𝑘 ) ) ) )  =  ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ·  ( 𝑧 ↑ 𝑛 ) ) ) | 
						
							| 221 | 220 | sumeq2dv | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  →  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ ( 𝑛  −  𝑘 ) )  ·  ( 𝑧 ↑ ( 𝑛  −  𝑘 ) ) ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ·  ( 𝑧 ↑ 𝑛 ) ) ) | 
						
							| 222 | 203 221 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ℂ )  ∧  𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) )  →  ( Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ·  ( 𝑧 ↑ 𝑛 ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ ( 𝑛  −  𝑘 ) )  ·  ( 𝑧 ↑ ( 𝑛  −  𝑘 ) ) ) ) ) | 
						
							| 223 | 222 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ·  ( 𝑧 ↑ 𝑛 ) )  =  Σ 𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  ( ( 𝐵 ‘ ( 𝑛  −  𝑘 ) )  ·  ( 𝑧 ↑ ( 𝑛  −  𝑘 ) ) ) ) ) | 
						
							| 224 | 43 191 223 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ·  ( 𝑧 ↑ 𝑛 ) )  =  ( Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  Σ 𝑛  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) ) ) | 
						
							| 225 |  | fveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝐵 ‘ 𝑛 )  =  ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 226 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 𝑧 ↑ 𝑛 )  =  ( 𝑧 ↑ 𝑘 ) ) | 
						
							| 227 | 225 226 | oveq12d | ⊢ ( 𝑛  =  𝑘  →  ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) )  =  ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 228 | 227 | cbvsumv | ⊢ Σ 𝑛  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) | 
						
							| 229 | 228 | oveq2i | ⊢ ( Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  Σ 𝑛  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑛 )  ·  ( 𝑧 ↑ 𝑛 ) ) )  =  ( Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 230 | 224 229 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ℂ )  →  Σ 𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ·  ( 𝑧 ↑ 𝑛 ) )  =  ( Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 231 | 230 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ·  ( 𝑧 ↑ 𝑛 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  ( Σ 𝑘  ∈  ( 0 ... 𝑀 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ·  Σ 𝑘  ∈  ( 0 ... 𝑁 ) ( ( 𝐵 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 232 | 17 231 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐹  ∘f   ·  𝐺 )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑛  ∈  ( 0 ... ( 𝑀  +  𝑁 ) ) ( Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝐴 ‘ 𝑘 )  ·  ( 𝐵 ‘ ( 𝑛  −  𝑘 ) ) )  ·  ( 𝑧 ↑ 𝑛 ) ) ) ) |