| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plypf1.r | ⊢ 𝑅  =  ( ℂfld  ↾s  𝑆 ) | 
						
							| 2 |  | plypf1.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 3 |  | plypf1.a | ⊢ 𝐴  =  ( Base ‘ 𝑃 ) | 
						
							| 4 |  | plypf1.e | ⊢ 𝐸  =  ( eval1 ‘ ℂfld ) | 
						
							| 5 |  | elply | ⊢ ( 𝑓  ∈  ( Poly ‘ 𝑆 )  ↔  ( 𝑆  ⊆  ℂ  ∧  ∃ 𝑛  ∈  ℕ0 ∃ 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) 𝑓  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 6 | 5 | simprbi | ⊢ ( 𝑓  ∈  ( Poly ‘ 𝑆 )  →  ∃ 𝑛  ∈  ℕ0 ∃ 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) 𝑓  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 7 |  | eqid | ⊢ ( ℂfld  ↑s  ℂ )  =  ( ℂfld  ↑s  ℂ ) | 
						
							| 8 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 9 |  | eqid | ⊢ ( 0g ‘ ( ℂfld  ↑s  ℂ ) )  =  ( 0g ‘ ( ℂfld  ↑s  ℂ ) ) | 
						
							| 10 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  ℂ  ∈  V ) | 
						
							| 12 |  | fzfid | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  ( 0 ... 𝑛 )  ∈  Fin ) | 
						
							| 13 |  | cnring | ⊢ ℂfld  ∈  Ring | 
						
							| 14 |  | ringcmn | ⊢ ( ℂfld  ∈  Ring  →  ℂfld  ∈  CMnd ) | 
						
							| 15 | 13 14 | mp1i | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  ℂfld  ∈  CMnd ) | 
						
							| 16 | 8 | subrgss | ⊢ ( 𝑆  ∈  ( SubRing ‘ ℂfld )  →  𝑆  ⊆  ℂ ) | 
						
							| 17 | 16 | ad2antrr | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  𝑆  ⊆  ℂ ) | 
						
							| 18 |  | elmapi | ⊢ ( 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 )  →  𝑎 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } ) ) | 
						
							| 19 | 18 | ad2antll | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  𝑎 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } ) ) | 
						
							| 20 |  | subrgsubg | ⊢ ( 𝑆  ∈  ( SubRing ‘ ℂfld )  →  𝑆  ∈  ( SubGrp ‘ ℂfld ) ) | 
						
							| 21 |  | cnfld0 | ⊢ 0  =  ( 0g ‘ ℂfld ) | 
						
							| 22 | 21 | subg0cl | ⊢ ( 𝑆  ∈  ( SubGrp ‘ ℂfld )  →  0  ∈  𝑆 ) | 
						
							| 23 | 20 22 | syl | ⊢ ( 𝑆  ∈  ( SubRing ‘ ℂfld )  →  0  ∈  𝑆 ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  0  ∈  𝑆 ) | 
						
							| 25 | 24 | snssd | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  { 0 }  ⊆  𝑆 ) | 
						
							| 26 |  | ssequn2 | ⊢ ( { 0 }  ⊆  𝑆  ↔  ( 𝑆  ∪  { 0 } )  =  𝑆 ) | 
						
							| 27 | 25 26 | sylib | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  ( 𝑆  ∪  { 0 } )  =  𝑆 ) | 
						
							| 28 | 27 | feq3d | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  ( 𝑎 : ℕ0 ⟶ ( 𝑆  ∪  { 0 } )  ↔  𝑎 : ℕ0 ⟶ 𝑆 ) ) | 
						
							| 29 | 19 28 | mpbid | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  𝑎 : ℕ0 ⟶ 𝑆 ) | 
						
							| 30 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... 𝑛 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 31 |  | ffvelcdm | ⊢ ( ( 𝑎 : ℕ0 ⟶ 𝑆  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑎 ‘ 𝑘 )  ∈  𝑆 ) | 
						
							| 32 | 29 30 31 | syl2an | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑎 ‘ 𝑘 )  ∈  𝑆 ) | 
						
							| 33 | 17 32 | sseldd | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑎 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 34 | 33 | adantrl | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  ( 𝑧  ∈  ℂ  ∧  𝑘  ∈  ( 0 ... 𝑛 ) ) )  →  ( 𝑎 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 35 |  | simprl | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  ( 𝑧  ∈  ℂ  ∧  𝑘  ∈  ( 0 ... 𝑛 ) ) )  →  𝑧  ∈  ℂ ) | 
						
							| 36 | 30 | ad2antll | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  ( 𝑧  ∈  ℂ  ∧  𝑘  ∈  ( 0 ... 𝑛 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 37 |  | expcl | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 38 | 35 36 37 | syl2anc | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  ( 𝑧  ∈  ℂ  ∧  𝑘  ∈  ( 0 ... 𝑛 ) ) )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 39 | 34 38 | mulcld | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  ( 𝑧  ∈  ℂ  ∧  𝑘  ∈  ( 0 ... 𝑛 ) ) )  →  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 40 |  | eqid | ⊢ ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  =  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 41 | 10 | mptex | ⊢ ( 𝑧  ∈  ℂ  ↦  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ∈  V | 
						
							| 42 | 41 | a1i | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ∈  V ) | 
						
							| 43 |  | fvex | ⊢ ( 0g ‘ ( ℂfld  ↑s  ℂ ) )  ∈  V | 
						
							| 44 | 43 | a1i | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  ( 0g ‘ ( ℂfld  ↑s  ℂ ) )  ∈  V ) | 
						
							| 45 | 40 12 42 44 | fsuppmptdm | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  finSupp  ( 0g ‘ ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 46 | 7 8 9 11 12 15 39 45 | pwsgsum | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  ( ( ℂfld  ↑s  ℂ )  Σg  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) )  =  ( 𝑧  ∈  ℂ  ↦  ( ℂfld  Σg  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) | 
						
							| 47 |  | fzfid | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑧  ∈  ℂ )  →  ( 0 ... 𝑛 )  ∈  Fin ) | 
						
							| 48 | 39 | anassrs | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 49 | 47 48 | gsumfsum | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑧  ∈  ℂ )  →  ( ℂfld  Σg  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  =  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 50 | 49 | mpteq2dva | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  ( 𝑧  ∈  ℂ  ↦  ( ℂfld  Σg  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 51 | 46 50 | eqtrd | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  ( ( ℂfld  ↑s  ℂ )  Σg  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 52 | 7 | pwsring | ⊢ ( ( ℂfld  ∈  Ring  ∧  ℂ  ∈  V )  →  ( ℂfld  ↑s  ℂ )  ∈  Ring ) | 
						
							| 53 | 13 10 52 | mp2an | ⊢ ( ℂfld  ↑s  ℂ )  ∈  Ring | 
						
							| 54 |  | ringcmn | ⊢ ( ( ℂfld  ↑s  ℂ )  ∈  Ring  →  ( ℂfld  ↑s  ℂ )  ∈  CMnd ) | 
						
							| 55 | 53 54 | mp1i | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  ( ℂfld  ↑s  ℂ )  ∈  CMnd ) | 
						
							| 56 |  | cncrng | ⊢ ℂfld  ∈  CRing | 
						
							| 57 |  | eqid | ⊢ ( Poly1 ‘ ℂfld )  =  ( Poly1 ‘ ℂfld ) | 
						
							| 58 | 4 57 7 8 | evl1rhm | ⊢ ( ℂfld  ∈  CRing  →  𝐸  ∈  ( ( Poly1 ‘ ℂfld )  RingHom  ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 59 | 56 58 | ax-mp | ⊢ 𝐸  ∈  ( ( Poly1 ‘ ℂfld )  RingHom  ( ℂfld  ↑s  ℂ ) ) | 
						
							| 60 | 57 1 2 3 | subrgply1 | ⊢ ( 𝑆  ∈  ( SubRing ‘ ℂfld )  →  𝐴  ∈  ( SubRing ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  𝐴  ∈  ( SubRing ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 62 |  | rhmima | ⊢ ( ( 𝐸  ∈  ( ( Poly1 ‘ ℂfld )  RingHom  ( ℂfld  ↑s  ℂ ) )  ∧  𝐴  ∈  ( SubRing ‘ ( Poly1 ‘ ℂfld ) ) )  →  ( 𝐸  “  𝐴 )  ∈  ( SubRing ‘ ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 63 | 59 61 62 | sylancr | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  ( 𝐸  “  𝐴 )  ∈  ( SubRing ‘ ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 64 |  | subrgsubg | ⊢ ( ( 𝐸  “  𝐴 )  ∈  ( SubRing ‘ ( ℂfld  ↑s  ℂ ) )  →  ( 𝐸  “  𝐴 )  ∈  ( SubGrp ‘ ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 65 |  | subgsubm | ⊢ ( ( 𝐸  “  𝐴 )  ∈  ( SubGrp ‘ ( ℂfld  ↑s  ℂ ) )  →  ( 𝐸  “  𝐴 )  ∈  ( SubMnd ‘ ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 66 | 63 64 65 | 3syl | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  ( 𝐸  “  𝐴 )  ∈  ( SubMnd ‘ ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 67 |  | eqid | ⊢ ( Base ‘ ( ℂfld  ↑s  ℂ ) )  =  ( Base ‘ ( ℂfld  ↑s  ℂ ) ) | 
						
							| 68 | 13 | a1i | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ℂfld  ∈  Ring ) | 
						
							| 69 | 10 | a1i | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ℂ  ∈  V ) | 
						
							| 70 |  | fconst6g | ⊢ ( ( 𝑎 ‘ 𝑘 )  ∈  ℂ  →  ( ℂ  ×  { ( 𝑎 ‘ 𝑘 ) } ) : ℂ ⟶ ℂ ) | 
						
							| 71 | 33 70 | syl | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ℂ  ×  { ( 𝑎 ‘ 𝑘 ) } ) : ℂ ⟶ ℂ ) | 
						
							| 72 | 7 8 67 | pwselbasb | ⊢ ( ( ℂfld  ∈  Ring  ∧  ℂ  ∈  V )  →  ( ( ℂ  ×  { ( 𝑎 ‘ 𝑘 ) } )  ∈  ( Base ‘ ( ℂfld  ↑s  ℂ ) )  ↔  ( ℂ  ×  { ( 𝑎 ‘ 𝑘 ) } ) : ℂ ⟶ ℂ ) ) | 
						
							| 73 | 13 10 72 | mp2an | ⊢ ( ( ℂ  ×  { ( 𝑎 ‘ 𝑘 ) } )  ∈  ( Base ‘ ( ℂfld  ↑s  ℂ ) )  ↔  ( ℂ  ×  { ( 𝑎 ‘ 𝑘 ) } ) : ℂ ⟶ ℂ ) | 
						
							| 74 | 71 73 | sylibr | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ℂ  ×  { ( 𝑎 ‘ 𝑘 ) } )  ∈  ( Base ‘ ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 75 | 38 | anass1rs | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  ∧  𝑧  ∈  ℂ )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 76 | 75 | fmpttd | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 𝑘 ) ) : ℂ ⟶ ℂ ) | 
						
							| 77 | 7 8 67 | pwselbasb | ⊢ ( ( ℂfld  ∈  Ring  ∧  ℂ  ∈  V )  →  ( ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 𝑘 ) )  ∈  ( Base ‘ ( ℂfld  ↑s  ℂ ) )  ↔  ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 𝑘 ) ) : ℂ ⟶ ℂ ) ) | 
						
							| 78 | 13 10 77 | mp2an | ⊢ ( ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 𝑘 ) )  ∈  ( Base ‘ ( ℂfld  ↑s  ℂ ) )  ↔  ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 𝑘 ) ) : ℂ ⟶ ℂ ) | 
						
							| 79 | 76 78 | sylibr | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 𝑘 ) )  ∈  ( Base ‘ ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 80 |  | cnfldmul | ⊢  ·   =  ( .r ‘ ℂfld ) | 
						
							| 81 |  | eqid | ⊢ ( .r ‘ ( ℂfld  ↑s  ℂ ) )  =  ( .r ‘ ( ℂfld  ↑s  ℂ ) ) | 
						
							| 82 | 7 67 68 69 74 79 80 81 | pwsmulrval | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ( ℂ  ×  { ( 𝑎 ‘ 𝑘 ) } ) ( .r ‘ ( ℂfld  ↑s  ℂ ) ) ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 𝑘 ) ) )  =  ( ( ℂ  ×  { ( 𝑎 ‘ 𝑘 ) } )  ∘f   ·  ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 83 | 33 | adantr | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  ∧  𝑧  ∈  ℂ )  →  ( 𝑎 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 84 |  | fconstmpt | ⊢ ( ℂ  ×  { ( 𝑎 ‘ 𝑘 ) } )  =  ( 𝑧  ∈  ℂ  ↦  ( 𝑎 ‘ 𝑘 ) ) | 
						
							| 85 | 84 | a1i | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ℂ  ×  { ( 𝑎 ‘ 𝑘 ) } )  =  ( 𝑧  ∈  ℂ  ↦  ( 𝑎 ‘ 𝑘 ) ) ) | 
						
							| 86 |  | eqidd | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 𝑘 ) )  =  ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 87 | 69 83 75 85 86 | offval2 | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ( ℂ  ×  { ( 𝑎 ‘ 𝑘 ) } )  ∘f   ·  ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 88 | 82 87 | eqtrd | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ( ℂ  ×  { ( 𝑎 ‘ 𝑘 ) } ) ( .r ‘ ( ℂfld  ↑s  ℂ ) ) ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 89 | 63 | adantr | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝐸  “  𝐴 )  ∈  ( SubRing ‘ ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 90 |  | eqid | ⊢ ( algSc ‘ ( Poly1 ‘ ℂfld ) )  =  ( algSc ‘ ( Poly1 ‘ ℂfld ) ) | 
						
							| 91 | 4 57 8 90 | evl1sca | ⊢ ( ( ℂfld  ∈  CRing  ∧  ( 𝑎 ‘ 𝑘 )  ∈  ℂ )  →  ( 𝐸 ‘ ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ ( 𝑎 ‘ 𝑘 ) ) )  =  ( ℂ  ×  { ( 𝑎 ‘ 𝑘 ) } ) ) | 
						
							| 92 | 56 33 91 | sylancr | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝐸 ‘ ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ ( 𝑎 ‘ 𝑘 ) ) )  =  ( ℂ  ×  { ( 𝑎 ‘ 𝑘 ) } ) ) | 
						
							| 93 |  | eqid | ⊢ ( Base ‘ ( Poly1 ‘ ℂfld ) )  =  ( Base ‘ ( Poly1 ‘ ℂfld ) ) | 
						
							| 94 | 93 67 | rhmf | ⊢ ( 𝐸  ∈  ( ( Poly1 ‘ ℂfld )  RingHom  ( ℂfld  ↑s  ℂ ) )  →  𝐸 : ( Base ‘ ( Poly1 ‘ ℂfld ) ) ⟶ ( Base ‘ ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 95 | 59 94 | ax-mp | ⊢ 𝐸 : ( Base ‘ ( Poly1 ‘ ℂfld ) ) ⟶ ( Base ‘ ( ℂfld  ↑s  ℂ ) ) | 
						
							| 96 |  | ffn | ⊢ ( 𝐸 : ( Base ‘ ( Poly1 ‘ ℂfld ) ) ⟶ ( Base ‘ ( ℂfld  ↑s  ℂ ) )  →  𝐸  Fn  ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 97 | 95 96 | mp1i | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  𝐸  Fn  ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 98 | 93 | subrgss | ⊢ ( 𝐴  ∈  ( SubRing ‘ ( Poly1 ‘ ℂfld ) )  →  𝐴  ⊆  ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 99 | 60 98 | syl | ⊢ ( 𝑆  ∈  ( SubRing ‘ ℂfld )  →  𝐴  ⊆  ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 100 | 99 | ad2antrr | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  𝐴  ⊆  ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 101 |  | simpll | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  𝑆  ∈  ( SubRing ‘ ℂfld ) ) | 
						
							| 102 | 57 90 1 2 101 3 8 33 | subrg1asclcl | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ ( 𝑎 ‘ 𝑘 ) )  ∈  𝐴  ↔  ( 𝑎 ‘ 𝑘 )  ∈  𝑆 ) ) | 
						
							| 103 | 32 102 | mpbird | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ ( 𝑎 ‘ 𝑘 ) )  ∈  𝐴 ) | 
						
							| 104 |  | fnfvima | ⊢ ( ( 𝐸  Fn  ( Base ‘ ( Poly1 ‘ ℂfld ) )  ∧  𝐴  ⊆  ( Base ‘ ( Poly1 ‘ ℂfld ) )  ∧  ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ ( 𝑎 ‘ 𝑘 ) )  ∈  𝐴 )  →  ( 𝐸 ‘ ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ ( 𝑎 ‘ 𝑘 ) ) )  ∈  ( 𝐸  “  𝐴 ) ) | 
						
							| 105 | 97 100 103 104 | syl3anc | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝐸 ‘ ( ( algSc ‘ ( Poly1 ‘ ℂfld ) ) ‘ ( 𝑎 ‘ 𝑘 ) ) )  ∈  ( 𝐸  “  𝐴 ) ) | 
						
							| 106 | 92 105 | eqeltrrd | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ℂ  ×  { ( 𝑎 ‘ 𝑘 ) } )  ∈  ( 𝐸  “  𝐴 ) ) | 
						
							| 107 | 67 | subrgss | ⊢ ( ( 𝐸  “  𝐴 )  ∈  ( SubRing ‘ ( ℂfld  ↑s  ℂ ) )  →  ( 𝐸  “  𝐴 )  ⊆  ( Base ‘ ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 108 | 89 107 | syl | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝐸  “  𝐴 )  ⊆  ( Base ‘ ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 109 | 60 | ad2antrr | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  𝐴  ∈  ( SubRing ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 110 |  | eqid | ⊢ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) )  =  ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) | 
						
							| 111 | 110 | subrgsubm | ⊢ ( 𝐴  ∈  ( SubRing ‘ ( Poly1 ‘ ℂfld ) )  →  𝐴  ∈  ( SubMnd ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ) | 
						
							| 112 | 109 111 | syl | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  𝐴  ∈  ( SubMnd ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ) | 
						
							| 113 | 30 | adantl | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 114 |  | eqid | ⊢ ( var1 ‘ ℂfld )  =  ( var1 ‘ ℂfld ) | 
						
							| 115 | 114 101 1 2 3 | subrgvr1cl | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( var1 ‘ ℂfld )  ∈  𝐴 ) | 
						
							| 116 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) )  =  ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 117 | 116 | submmulgcl | ⊢ ( ( 𝐴  ∈  ( SubMnd ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) )  ∧  𝑘  ∈  ℕ0  ∧  ( var1 ‘ ℂfld )  ∈  𝐴 )  →  ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) )  ∈  𝐴 ) | 
						
							| 118 | 112 113 115 117 | syl3anc | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) )  ∈  𝐴 ) | 
						
							| 119 |  | fnfvima | ⊢ ( ( 𝐸  Fn  ( Base ‘ ( Poly1 ‘ ℂfld ) )  ∧  𝐴  ⊆  ( Base ‘ ( Poly1 ‘ ℂfld ) )  ∧  ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) )  ∈  𝐴 )  →  ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) )  ∈  ( 𝐸  “  𝐴 ) ) | 
						
							| 120 | 97 100 118 119 | syl3anc | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) )  ∈  ( 𝐸  “  𝐴 ) ) | 
						
							| 121 | 108 120 | sseldd | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) )  ∈  ( Base ‘ ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 122 | 7 8 67 68 69 121 | pwselbas | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) : ℂ ⟶ ℂ ) | 
						
							| 123 | 122 | feqmptd | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) )  =  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) ) ) | 
						
							| 124 | 56 | a1i | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  ∧  𝑧  ∈  ℂ )  →  ℂfld  ∈  CRing ) | 
						
							| 125 |  | simpr | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  ∧  𝑧  ∈  ℂ )  →  𝑧  ∈  ℂ ) | 
						
							| 126 | 4 114 8 57 93 124 125 | evl1vard | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  ∧  𝑧  ∈  ℂ )  →  ( ( var1 ‘ ℂfld )  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) )  ∧  ( ( 𝐸 ‘ ( var1 ‘ ℂfld ) ) ‘ 𝑧 )  =  𝑧 ) ) | 
						
							| 127 |  | eqid | ⊢ ( .g ‘ ( mulGrp ‘ ℂfld ) )  =  ( .g ‘ ( mulGrp ‘ ℂfld ) ) | 
						
							| 128 | 113 | adantr | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  ∧  𝑧  ∈  ℂ )  →  𝑘  ∈  ℕ0 ) | 
						
							| 129 | 4 57 8 93 124 125 126 116 127 128 | evl1expd | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) )  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) )  ∧  ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 )  =  ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 ) ) ) | 
						
							| 130 | 129 | simprd | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  ∧  𝑧  ∈  ℂ )  →  ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 )  =  ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 ) ) | 
						
							| 131 |  | cnfldexp | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 )  =  ( 𝑧 ↑ 𝑘 ) ) | 
						
							| 132 | 125 128 131 | syl2anc | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  ∧  𝑧  ∈  ℂ )  →  ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 )  =  ( 𝑧 ↑ 𝑘 ) ) | 
						
							| 133 | 130 132 | eqtrd | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  ∧  𝑧  ∈  ℂ )  →  ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 )  =  ( 𝑧 ↑ 𝑘 ) ) | 
						
							| 134 | 133 | mpteq2dva | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 ) )  =  ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 135 | 123 134 | eqtrd | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) )  =  ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 136 | 135 120 | eqeltrrd | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 𝑘 ) )  ∈  ( 𝐸  “  𝐴 ) ) | 
						
							| 137 | 81 | subrgmcl | ⊢ ( ( ( 𝐸  “  𝐴 )  ∈  ( SubRing ‘ ( ℂfld  ↑s  ℂ ) )  ∧  ( ℂ  ×  { ( 𝑎 ‘ 𝑘 ) } )  ∈  ( 𝐸  “  𝐴 )  ∧  ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 𝑘 ) )  ∈  ( 𝐸  “  𝐴 ) )  →  ( ( ℂ  ×  { ( 𝑎 ‘ 𝑘 ) } ) ( .r ‘ ( ℂfld  ↑s  ℂ ) ) ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 𝑘 ) ) )  ∈  ( 𝐸  “  𝐴 ) ) | 
						
							| 138 | 89 106 136 137 | syl3anc | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( ( ℂ  ×  { ( 𝑎 ‘ 𝑘 ) } ) ( .r ‘ ( ℂfld  ↑s  ℂ ) ) ( 𝑧  ∈  ℂ  ↦  ( 𝑧 ↑ 𝑘 ) ) )  ∈  ( 𝐸  “  𝐴 ) ) | 
						
							| 139 | 88 138 | eqeltrrd | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  ∧  𝑘  ∈  ( 0 ... 𝑛 ) )  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ∈  ( 𝐸  “  𝐴 ) ) | 
						
							| 140 | 139 | fmpttd | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) : ( 0 ... 𝑛 ) ⟶ ( 𝐸  “  𝐴 ) ) | 
						
							| 141 | 40 12 139 44 | fsuppmptdm | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  finSupp  ( 0g ‘ ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 142 | 9 55 12 66 140 141 | gsumsubmcl | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  ( ( ℂfld  ↑s  ℂ )  Σg  ( 𝑘  ∈  ( 0 ... 𝑛 )  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) )  ∈  ( 𝐸  “  𝐴 ) ) | 
						
							| 143 | 51 142 | eqeltrrd | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ∈  ( 𝐸  “  𝐴 ) ) | 
						
							| 144 |  | eleq1 | ⊢ ( 𝑓  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  →  ( 𝑓  ∈  ( 𝐸  “  𝐴 )  ↔  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ∈  ( 𝐸  “  𝐴 ) ) ) | 
						
							| 145 | 143 144 | syl5ibrcom | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  ( 𝑛  ∈  ℕ0  ∧  𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) ) )  →  ( 𝑓  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  →  𝑓  ∈  ( 𝐸  “  𝐴 ) ) ) | 
						
							| 146 | 145 | rexlimdvva | ⊢ ( 𝑆  ∈  ( SubRing ‘ ℂfld )  →  ( ∃ 𝑛  ∈  ℕ0 ∃ 𝑎  ∈  ( ( 𝑆  ∪  { 0 } )  ↑m  ℕ0 ) 𝑓  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  →  𝑓  ∈  ( 𝐸  “  𝐴 ) ) ) | 
						
							| 147 | 6 146 | syl5 | ⊢ ( 𝑆  ∈  ( SubRing ‘ ℂfld )  →  ( 𝑓  ∈  ( Poly ‘ 𝑆 )  →  𝑓  ∈  ( 𝐸  “  𝐴 ) ) ) | 
						
							| 148 |  | ffun | ⊢ ( 𝐸 : ( Base ‘ ( Poly1 ‘ ℂfld ) ) ⟶ ( Base ‘ ( ℂfld  ↑s  ℂ ) )  →  Fun  𝐸 ) | 
						
							| 149 | 95 148 | ax-mp | ⊢ Fun  𝐸 | 
						
							| 150 |  | fvelima | ⊢ ( ( Fun  𝐸  ∧  𝑓  ∈  ( 𝐸  “  𝐴 ) )  →  ∃ 𝑎  ∈  𝐴 ( 𝐸 ‘ 𝑎 )  =  𝑓 ) | 
						
							| 151 | 149 150 | mpan | ⊢ ( 𝑓  ∈  ( 𝐸  “  𝐴 )  →  ∃ 𝑎  ∈  𝐴 ( 𝐸 ‘ 𝑎 )  =  𝑓 ) | 
						
							| 152 | 99 | sselda | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  𝑎  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 153 |  | eqid | ⊢ (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) )  =  (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) | 
						
							| 154 |  | eqid | ⊢ ( coe1 ‘ 𝑎 )  =  ( coe1 ‘ 𝑎 ) | 
						
							| 155 | 57 114 93 153 110 116 154 | ply1coe | ⊢ ( ( ℂfld  ∈  Ring  ∧  𝑎  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) ) )  →  𝑎  =  ( ( Poly1 ‘ ℂfld )  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) ) | 
						
							| 156 | 13 152 155 | sylancr | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  𝑎  =  ( ( Poly1 ‘ ℂfld )  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) ) | 
						
							| 157 | 156 | fveq2d | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐸 ‘ 𝑎 )  =  ( 𝐸 ‘ ( ( Poly1 ‘ ℂfld )  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) ) ) | 
						
							| 158 |  | eqid | ⊢ ( 0g ‘ ( Poly1 ‘ ℂfld ) )  =  ( 0g ‘ ( Poly1 ‘ ℂfld ) ) | 
						
							| 159 | 57 | ply1ring | ⊢ ( ℂfld  ∈  Ring  →  ( Poly1 ‘ ℂfld )  ∈  Ring ) | 
						
							| 160 | 13 159 | ax-mp | ⊢ ( Poly1 ‘ ℂfld )  ∈  Ring | 
						
							| 161 |  | ringcmn | ⊢ ( ( Poly1 ‘ ℂfld )  ∈  Ring  →  ( Poly1 ‘ ℂfld )  ∈  CMnd ) | 
						
							| 162 | 160 161 | mp1i | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( Poly1 ‘ ℂfld )  ∈  CMnd ) | 
						
							| 163 |  | ringmnd | ⊢ ( ( ℂfld  ↑s  ℂ )  ∈  Ring  →  ( ℂfld  ↑s  ℂ )  ∈  Mnd ) | 
						
							| 164 | 53 163 | mp1i | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( ℂfld  ↑s  ℂ )  ∈  Mnd ) | 
						
							| 165 |  | nn0ex | ⊢ ℕ0  ∈  V | 
						
							| 166 | 165 | a1i | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ℕ0  ∈  V ) | 
						
							| 167 |  | rhmghm | ⊢ ( 𝐸  ∈  ( ( Poly1 ‘ ℂfld )  RingHom  ( ℂfld  ↑s  ℂ ) )  →  𝐸  ∈  ( ( Poly1 ‘ ℂfld )  GrpHom  ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 168 | 59 167 | ax-mp | ⊢ 𝐸  ∈  ( ( Poly1 ‘ ℂfld )  GrpHom  ( ℂfld  ↑s  ℂ ) ) | 
						
							| 169 |  | ghmmhm | ⊢ ( 𝐸  ∈  ( ( Poly1 ‘ ℂfld )  GrpHom  ( ℂfld  ↑s  ℂ ) )  →  𝐸  ∈  ( ( Poly1 ‘ ℂfld )  MndHom  ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 170 | 168 169 | mp1i | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  𝐸  ∈  ( ( Poly1 ‘ ℂfld )  MndHom  ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 171 | 57 | ply1lmod | ⊢ ( ℂfld  ∈  Ring  →  ( Poly1 ‘ ℂfld )  ∈  LMod ) | 
						
							| 172 | 13 171 | mp1i | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  →  ( Poly1 ‘ ℂfld )  ∈  LMod ) | 
						
							| 173 | 16 | ad2antrr | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  →  𝑆  ⊆  ℂ ) | 
						
							| 174 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 175 | 154 3 2 174 | coe1f | ⊢ ( 𝑎  ∈  𝐴  →  ( coe1 ‘ 𝑎 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 176 | 1 | subrgbas | ⊢ ( 𝑆  ∈  ( SubRing ‘ ℂfld )  →  𝑆  =  ( Base ‘ 𝑅 ) ) | 
						
							| 177 | 176 | feq3d | ⊢ ( 𝑆  ∈  ( SubRing ‘ ℂfld )  →  ( ( coe1 ‘ 𝑎 ) : ℕ0 ⟶ 𝑆  ↔  ( coe1 ‘ 𝑎 ) : ℕ0 ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 178 | 175 177 | imbitrrid | ⊢ ( 𝑆  ∈  ( SubRing ‘ ℂfld )  →  ( 𝑎  ∈  𝐴  →  ( coe1 ‘ 𝑎 ) : ℕ0 ⟶ 𝑆 ) ) | 
						
							| 179 | 178 | imp | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( coe1 ‘ 𝑎 ) : ℕ0 ⟶ 𝑆 ) | 
						
							| 180 | 179 | ffvelcdmda | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ∈  𝑆 ) | 
						
							| 181 | 173 180 | sseldd | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 182 | 110 93 | mgpbas | ⊢ ( Base ‘ ( Poly1 ‘ ℂfld ) )  =  ( Base ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 183 | 110 | ringmgp | ⊢ ( ( Poly1 ‘ ℂfld )  ∈  Ring  →  ( mulGrp ‘ ( Poly1 ‘ ℂfld ) )  ∈  Mnd ) | 
						
							| 184 | 160 183 | mp1i | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  →  ( mulGrp ‘ ( Poly1 ‘ ℂfld ) )  ∈  Mnd ) | 
						
							| 185 |  | simpr | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 ) | 
						
							| 186 | 114 57 93 | vr1cl | ⊢ ( ℂfld  ∈  Ring  →  ( var1 ‘ ℂfld )  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 187 | 13 186 | mp1i | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  →  ( var1 ‘ ℂfld )  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 188 | 182 116 184 185 187 | mulgnn0cld | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) )  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 189 | 57 | ply1sca | ⊢ ( ℂfld  ∈  Ring  →  ℂfld  =  ( Scalar ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 190 | 13 189 | ax-mp | ⊢ ℂfld  =  ( Scalar ‘ ( Poly1 ‘ ℂfld ) ) | 
						
							| 191 | 93 190 153 8 | lmodvscl | ⊢ ( ( ( Poly1 ‘ ℂfld )  ∈  LMod  ∧  ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ∈  ℂ  ∧  ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) )  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) ) )  →  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) )  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 192 | 172 181 188 191 | syl3anc | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) )  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 193 | 192 | fmpttd | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) : ℕ0 ⟶ ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 194 | 165 | mptex | ⊢ ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) )  ∈  V | 
						
							| 195 |  | funmpt | ⊢ Fun  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) | 
						
							| 196 |  | fvex | ⊢ ( 0g ‘ ( Poly1 ‘ ℂfld ) )  ∈  V | 
						
							| 197 | 194 195 196 | 3pm3.2i | ⊢ ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) )  ∈  V  ∧  Fun  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) )  ∧  ( 0g ‘ ( Poly1 ‘ ℂfld ) )  ∈  V ) | 
						
							| 198 | 197 | a1i | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) )  ∈  V  ∧  Fun  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) )  ∧  ( 0g ‘ ( Poly1 ‘ ℂfld ) )  ∈  V ) ) | 
						
							| 199 | 154 93 57 21 | coe1sfi | ⊢ ( 𝑎  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) )  →  ( coe1 ‘ 𝑎 )  finSupp  0 ) | 
						
							| 200 | 152 199 | syl | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( coe1 ‘ 𝑎 )  finSupp  0 ) | 
						
							| 201 | 200 | fsuppimpd | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( ( coe1 ‘ 𝑎 )  supp  0 )  ∈  Fin ) | 
						
							| 202 | 179 | feqmptd | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( coe1 ‘ 𝑎 )  =  ( 𝑘  ∈  ℕ0  ↦  ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) ) ) | 
						
							| 203 | 202 | oveq1d | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( ( coe1 ‘ 𝑎 )  supp  0 )  =  ( ( 𝑘  ∈  ℕ0  ↦  ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) )  supp  0 ) ) | 
						
							| 204 |  | eqimss2 | ⊢ ( ( ( coe1 ‘ 𝑎 )  supp  0 )  =  ( ( 𝑘  ∈  ℕ0  ↦  ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) )  supp  0 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) )  supp  0 )  ⊆  ( ( coe1 ‘ 𝑎 )  supp  0 ) ) | 
						
							| 205 | 203 204 | syl | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) )  supp  0 )  ⊆  ( ( coe1 ‘ 𝑎 )  supp  0 ) ) | 
						
							| 206 | 13 171 | mp1i | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( Poly1 ‘ ℂfld )  ∈  LMod ) | 
						
							| 207 | 93 190 153 21 158 | lmod0vs | ⊢ ( ( ( Poly1 ‘ ℂfld )  ∈  LMod  ∧  𝑥  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) ) )  →  ( 0 (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) 𝑥 )  =  ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 208 | 206 207 | sylan | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑥  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) ) )  →  ( 0 (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) 𝑥 )  =  ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 209 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 210 | 209 | a1i | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  0  ∈  V ) | 
						
							| 211 | 205 208 180 188 210 | suppssov1 | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) )  supp  ( 0g ‘ ( Poly1 ‘ ℂfld ) ) )  ⊆  ( ( coe1 ‘ 𝑎 )  supp  0 ) ) | 
						
							| 212 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) )  ∈  V  ∧  Fun  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) )  ∧  ( 0g ‘ ( Poly1 ‘ ℂfld ) )  ∈  V )  ∧  ( ( ( coe1 ‘ 𝑎 )  supp  0 )  ∈  Fin  ∧  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) )  supp  ( 0g ‘ ( Poly1 ‘ ℂfld ) ) )  ⊆  ( ( coe1 ‘ 𝑎 )  supp  0 ) ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) )  finSupp  ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 213 | 198 201 211 212 | syl12anc | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) )  finSupp  ( 0g ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 214 | 93 158 162 164 166 170 193 213 | gsummhm | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( ( ℂfld  ↑s  ℂ )  Σg  ( 𝐸  ∘  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) )  =  ( 𝐸 ‘ ( ( Poly1 ‘ ℂfld )  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) ) ) | 
						
							| 215 | 95 | a1i | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  𝐸 : ( Base ‘ ( Poly1 ‘ ℂfld ) ) ⟶ ( Base ‘ ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 216 | 215 192 | cofmpt | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐸  ∘  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) ) | 
						
							| 217 | 13 | a1i | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  →  ℂfld  ∈  Ring ) | 
						
							| 218 | 10 | a1i | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  →  ℂ  ∈  V ) | 
						
							| 219 | 95 | ffvelcdmi | ⊢ ( ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) )  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) )  →  ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) )  ∈  ( Base ‘ ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 220 | 192 219 | syl | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) )  ∈  ( Base ‘ ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 221 | 7 8 67 217 218 220 | pwselbas | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) : ℂ ⟶ ℂ ) | 
						
							| 222 | 221 | feqmptd | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) )  =  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ‘ 𝑧 ) ) ) | 
						
							| 223 | 56 | a1i | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  ℂfld  ∈  CRing ) | 
						
							| 224 |  | simpr | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  𝑧  ∈  ℂ ) | 
						
							| 225 | 4 114 8 57 93 223 224 | evl1vard | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  ( ( var1 ‘ ℂfld )  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) )  ∧  ( ( 𝐸 ‘ ( var1 ‘ ℂfld ) ) ‘ 𝑧 )  =  𝑧 ) ) | 
						
							| 226 | 185 | adantr | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  𝑘  ∈  ℕ0 ) | 
						
							| 227 | 4 57 8 93 223 224 225 116 127 226 | evl1expd | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) )  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) )  ∧  ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 )  =  ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 ) ) ) | 
						
							| 228 | 224 226 131 | syl2anc | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 )  =  ( 𝑧 ↑ 𝑘 ) ) | 
						
							| 229 | 228 | eqeq2d | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  ( ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 )  =  ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 )  ↔  ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 )  =  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 230 | 229 | anbi2d | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  ( ( ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) )  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) )  ∧  ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 )  =  ( 𝑘 ( .g ‘ ( mulGrp ‘ ℂfld ) ) 𝑧 ) )  ↔  ( ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) )  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) )  ∧  ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 )  =  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 231 | 227 230 | mpbid | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) )  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) )  ∧  ( ( 𝐸 ‘ ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ‘ 𝑧 )  =  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 232 | 181 | adantr | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 233 | 4 57 8 93 223 224 231 232 153 80 | evl1vsd | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  ( ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) )  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) )  ∧  ( ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ‘ 𝑧 )  =  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 234 | 233 | simprd | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  ∧  𝑧  ∈  ℂ )  →  ( ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ‘ 𝑧 )  =  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 235 | 234 | mpteq2dva | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑧  ∈  ℂ  ↦  ( ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ‘ 𝑧 ) )  =  ( 𝑧  ∈  ℂ  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 236 | 222 235 | eqtrd | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) )  =  ( 𝑧  ∈  ℂ  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 237 | 236 | mpteq2dva | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝐸 ‘ ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 238 | 216 237 | eqtrd | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐸  ∘  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) )  =  ( 𝑘  ∈  ℕ0  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 239 | 238 | oveq2d | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( ( ℂfld  ↑s  ℂ )  Σg  ( 𝐸  ∘  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 ) (  ·𝑠  ‘ ( Poly1 ‘ ℂfld ) ) ( 𝑘 ( .g ‘ ( mulGrp ‘ ( Poly1 ‘ ℂfld ) ) ) ( var1 ‘ ℂfld ) ) ) ) ) )  =  ( ( ℂfld  ↑s  ℂ )  Σg  ( 𝑘  ∈  ℕ0  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) | 
						
							| 240 | 157 214 239 | 3eqtr2d | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐸 ‘ 𝑎 )  =  ( ( ℂfld  ↑s  ℂ )  Σg  ( 𝑘  ∈  ℕ0  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) | 
						
							| 241 | 10 | a1i | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ℂ  ∈  V ) | 
						
							| 242 | 13 14 | mp1i | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ℂfld  ∈  CMnd ) | 
						
							| 243 | 181 | adantlr | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 244 | 37 | adantll | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 245 | 243 244 | mulcld | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 246 | 245 | anasss | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  ( 𝑧  ∈  ℂ  ∧  𝑘  ∈  ℕ0 ) )  →  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 247 | 165 | mptex | ⊢ ( 𝑘  ∈  ℕ0  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∈  V | 
						
							| 248 |  | funmpt | ⊢ Fun  ( 𝑘  ∈  ℕ0  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 249 | 247 248 43 | 3pm3.2i | ⊢ ( ( 𝑘  ∈  ℕ0  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∈  V  ∧  Fun  ( 𝑘  ∈  ℕ0  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( 0g ‘ ( ℂfld  ↑s  ℂ ) )  ∈  V ) | 
						
							| 250 | 249 | a1i | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∈  V  ∧  Fun  ( 𝑘  ∈  ℕ0  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( 0g ‘ ( ℂfld  ↑s  ℂ ) )  ∈  V ) ) | 
						
							| 251 |  | fzfid | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) )  ∈  Fin ) | 
						
							| 252 |  | eldifn | ⊢ ( 𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) )  →  ¬  𝑘  ∈  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) | 
						
							| 253 | 252 | adantl | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  ¬  𝑘  ∈  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) | 
						
							| 254 | 152 | ad2antrr | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  𝑎  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) ) ) | 
						
							| 255 |  | eldifi | ⊢ ( 𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 256 | 255 | adantl | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 257 |  | eqid | ⊢ ( deg1 ‘ ℂfld )  =  ( deg1 ‘ ℂfld ) | 
						
							| 258 | 257 57 93 21 154 | deg1ge | ⊢ ( ( 𝑎  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) )  ∧  𝑘  ∈  ℕ0  ∧  ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ≠  0 )  →  𝑘  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ) | 
						
							| 259 | 258 | 3expia | ⊢ ( ( 𝑎  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) )  ∧  𝑘  ∈  ℕ0 )  →  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ≠  0  →  𝑘  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ) ) | 
						
							| 260 | 254 256 259 | syl2anc | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ≠  0  →  𝑘  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ) ) | 
						
							| 261 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 262 | 257 57 93 | deg1xrcl | ⊢ ( 𝑎  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) )  →  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  ℝ* ) | 
						
							| 263 | 152 262 | syl | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  ℝ* ) | 
						
							| 264 | 263 | ad2antrr | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  ℝ* ) | 
						
							| 265 |  | xrmax2 | ⊢ ( ( 0  ∈  ℝ*  ∧  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  ℝ* )  →  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ≤  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) | 
						
							| 266 | 261 264 265 | sylancr | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ≤  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) | 
						
							| 267 | 256 | nn0red | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  𝑘  ∈  ℝ ) | 
						
							| 268 | 267 | rexrd | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  𝑘  ∈  ℝ* ) | 
						
							| 269 |  | ifcl | ⊢ ( ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  ℝ*  ∧  0  ∈  ℝ* )  →  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 )  ∈  ℝ* ) | 
						
							| 270 | 264 261 269 | sylancl | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 )  ∈  ℝ* ) | 
						
							| 271 |  | xrletr | ⊢ ( ( 𝑘  ∈  ℝ*  ∧  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  ℝ*  ∧  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 )  ∈  ℝ* )  →  ( ( 𝑘  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∧  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ≤  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) )  →  𝑘  ≤  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) | 
						
							| 272 | 268 264 270 271 | syl3anc | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  ( ( 𝑘  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∧  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ≤  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) )  →  𝑘  ≤  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) | 
						
							| 273 | 266 272 | mpan2d | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  ( 𝑘  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  →  𝑘  ≤  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) | 
						
							| 274 | 260 273 | syld | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ≠  0  →  𝑘  ≤  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) | 
						
							| 275 | 274 256 | jctild | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ≠  0  →  ( 𝑘  ∈  ℕ0  ∧  𝑘  ≤  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) ) | 
						
							| 276 | 257 57 93 | deg1cl | ⊢ ( 𝑎  ∈  ( Base ‘ ( Poly1 ‘ ℂfld ) )  →  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  ( ℕ0  ∪  { -∞ } ) ) | 
						
							| 277 | 152 276 | syl | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  ( ℕ0  ∪  { -∞ } ) ) | 
						
							| 278 |  | elun | ⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  ( ℕ0  ∪  { -∞ } )  ↔  ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  ℕ0  ∨  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  { -∞ } ) ) | 
						
							| 279 | 277 278 | sylib | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  ℕ0  ∨  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  { -∞ } ) ) | 
						
							| 280 |  | nn0ge0 | ⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  ℕ0  →  0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ) | 
						
							| 281 | 280 | iftrued | ⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  ℕ0  →  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 )  =  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ) | 
						
							| 282 |  | id | ⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  ℕ0  →  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  ℕ0 ) | 
						
							| 283 | 281 282 | eqeltrd | ⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  ℕ0  →  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 )  ∈  ℕ0 ) | 
						
							| 284 |  | mnflt0 | ⊢ -∞  <  0 | 
						
							| 285 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 286 |  | xrltnle | ⊢ ( ( -∞  ∈  ℝ*  ∧  0  ∈  ℝ* )  →  ( -∞  <  0  ↔  ¬  0  ≤  -∞ ) ) | 
						
							| 287 | 285 261 286 | mp2an | ⊢ ( -∞  <  0  ↔  ¬  0  ≤  -∞ ) | 
						
							| 288 | 284 287 | mpbi | ⊢ ¬  0  ≤  -∞ | 
						
							| 289 |  | elsni | ⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  { -∞ }  →  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  =  -∞ ) | 
						
							| 290 | 289 | breq2d | ⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  { -∞ }  →  ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ↔  0  ≤  -∞ ) ) | 
						
							| 291 | 288 290 | mtbiri | ⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  { -∞ }  →  ¬  0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ) | 
						
							| 292 | 291 | iffalsed | ⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  { -∞ }  →  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 )  =  0 ) | 
						
							| 293 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 294 | 292 293 | eqeltrdi | ⊢ ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  { -∞ }  →  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 )  ∈  ℕ0 ) | 
						
							| 295 | 283 294 | jaoi | ⊢ ( ( ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  ℕ0  ∨  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 )  ∈  { -∞ } )  →  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 )  ∈  ℕ0 ) | 
						
							| 296 | 279 295 | syl | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 )  ∈  ℕ0 ) | 
						
							| 297 | 296 | ad2antrr | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 )  ∈  ℕ0 ) | 
						
							| 298 |  | fznn0 | ⊢ ( if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 )  ∈  ℕ0  →  ( 𝑘  ∈  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) )  ↔  ( 𝑘  ∈  ℕ0  ∧  𝑘  ≤  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) ) | 
						
							| 299 | 297 298 | syl | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  ( 𝑘  ∈  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) )  ↔  ( 𝑘  ∈  ℕ0  ∧  𝑘  ≤  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) ) | 
						
							| 300 | 275 299 | sylibrd | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ≠  0  →  𝑘  ∈  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) ) | 
						
							| 301 | 300 | necon1bd | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  ( ¬  𝑘  ∈  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) )  →  ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  =  0 ) ) | 
						
							| 302 | 253 301 | mpd | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  =  0 ) | 
						
							| 303 | 302 | oveq1d | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  ( 0  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 304 | 255 244 | sylan2 | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  ( 𝑧 ↑ 𝑘 )  ∈  ℂ ) | 
						
							| 305 | 304 | mul02d | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  ( 0  ·  ( 𝑧 ↑ 𝑘 ) )  =  0 ) | 
						
							| 306 | 303 305 | eqtrd | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  0 ) | 
						
							| 307 | 306 | an32s | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  ∧  𝑧  ∈  ℂ )  →  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  =  0 ) | 
						
							| 308 | 307 | mpteq2dva | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  ( 𝑧  ∈  ℂ  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( 𝑧  ∈  ℂ  ↦  0 ) ) | 
						
							| 309 |  | fconstmpt | ⊢ ( ℂ  ×  { 0 } )  =  ( 𝑧  ∈  ℂ  ↦  0 ) | 
						
							| 310 |  | ringmnd | ⊢ ( ℂfld  ∈  Ring  →  ℂfld  ∈  Mnd ) | 
						
							| 311 | 13 310 | ax-mp | ⊢ ℂfld  ∈  Mnd | 
						
							| 312 | 7 21 | pws0g | ⊢ ( ( ℂfld  ∈  Mnd  ∧  ℂ  ∈  V )  →  ( ℂ  ×  { 0 } )  =  ( 0g ‘ ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 313 | 311 10 312 | mp2an | ⊢ ( ℂ  ×  { 0 } )  =  ( 0g ‘ ( ℂfld  ↑s  ℂ ) ) | 
						
							| 314 | 309 313 | eqtr3i | ⊢ ( 𝑧  ∈  ℂ  ↦  0 )  =  ( 0g ‘ ( ℂfld  ↑s  ℂ ) ) | 
						
							| 315 | 308 314 | eqtrdi | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑘  ∈  ( ℕ0  ∖  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  ( 𝑧  ∈  ℂ  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  =  ( 0g ‘ ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 316 | 315 166 | suppss2 | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  supp  ( 0g ‘ ( ℂfld  ↑s  ℂ ) ) )  ⊆  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) | 
						
							| 317 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑘  ∈  ℕ0  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∈  V  ∧  Fun  ( 𝑘  ∈  ℕ0  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  ∧  ( 0g ‘ ( ℂfld  ↑s  ℂ ) )  ∈  V )  ∧  ( ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) )  ∈  Fin  ∧  ( ( 𝑘  ∈  ℕ0  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  supp  ( 0g ‘ ( ℂfld  ↑s  ℂ ) ) )  ⊆  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  finSupp  ( 0g ‘ ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 318 | 250 251 316 317 | syl12anc | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  finSupp  ( 0g ‘ ( ℂfld  ↑s  ℂ ) ) ) | 
						
							| 319 | 7 8 9 241 166 242 246 318 | pwsgsum | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( ( ℂfld  ↑s  ℂ )  Σg  ( 𝑘  ∈  ℕ0  ↦  ( 𝑧  ∈  ℂ  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) )  =  ( 𝑧  ∈  ℂ  ↦  ( ℂfld  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) ) | 
						
							| 320 |  | fz0ssnn0 | ⊢ ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) )  ⊆  ℕ0 | 
						
							| 321 |  | resmpt | ⊢ ( ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) )  ⊆  ℕ0  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ↾  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) )  =  ( 𝑘  ∈  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) )  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 322 | 320 321 | ax-mp | ⊢ ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ↾  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) )  =  ( 𝑘  ∈  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) )  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 323 | 322 | oveq2i | ⊢ ( ℂfld  Σg  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ↾  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  =  ( ℂfld  Σg  ( 𝑘  ∈  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) )  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 324 | 13 14 | mp1i | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  →  ℂfld  ∈  CMnd ) | 
						
							| 325 | 165 | a1i | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  →  ℕ0  ∈  V ) | 
						
							| 326 | 245 | fmpttd | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) : ℕ0 ⟶ ℂ ) | 
						
							| 327 | 306 325 | suppss2 | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  supp  0 )  ⊆  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) | 
						
							| 328 | 165 | mptex | ⊢ ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ∈  V | 
						
							| 329 |  | funmpt | ⊢ Fun  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 330 | 328 329 209 | 3pm3.2i | ⊢ ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ∈  V  ∧  Fun  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ∧  0  ∈  V ) | 
						
							| 331 | 330 | a1i | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ∈  V  ∧  Fun  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ∧  0  ∈  V ) ) | 
						
							| 332 |  | fzfid | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  →  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) )  ∈  Fin ) | 
						
							| 333 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ∈  V  ∧  Fun  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ∧  0  ∈  V )  ∧  ( ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) )  ∈  Fin  ∧  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  supp  0 )  ⊆  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  finSupp  0 ) | 
						
							| 334 | 331 332 327 333 | syl12anc | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  →  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  finSupp  0 ) | 
						
							| 335 | 8 21 324 325 326 327 334 | gsumres | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  →  ( ℂfld  Σg  ( ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ↾  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ) )  =  ( ℂfld  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) ) | 
						
							| 336 |  | elfznn0 | ⊢ ( 𝑘  ∈  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) )  →  𝑘  ∈  ℕ0 ) | 
						
							| 337 | 336 245 | sylan2 | ⊢ ( ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  ∧  𝑘  ∈  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) )  →  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) )  ∈  ℂ ) | 
						
							| 338 | 332 337 | gsumfsum | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  →  ( ℂfld  Σg  ( 𝑘  ∈  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) )  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  =  Σ 𝑘  ∈  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 339 | 323 335 338 | 3eqtr3a | ⊢ ( ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  ∧  𝑧  ∈  ℂ )  →  ( ℂfld  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) )  =  Σ 𝑘  ∈  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) | 
						
							| 340 | 339 | mpteq2dva | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( 𝑧  ∈  ℂ  ↦  ( ℂfld  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 341 | 240 319 340 | 3eqtrd | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐸 ‘ 𝑎 )  =  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) ) ) | 
						
							| 342 | 16 | adantr | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  𝑆  ⊆  ℂ ) | 
						
							| 343 |  | elplyr | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 )  ∈  ℕ0  ∧  ( coe1 ‘ 𝑎 ) : ℕ0 ⟶ 𝑆 )  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 344 | 342 296 179 343 | syl3anc | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( 𝑧  ∈  ℂ  ↦  Σ 𝑘  ∈  ( 0 ... if ( 0  ≤  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  ( ( deg1 ‘ ℂfld ) ‘ 𝑎 ) ,  0 ) ) ( ( ( coe1 ‘ 𝑎 ) ‘ 𝑘 )  ·  ( 𝑧 ↑ 𝑘 ) ) )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 345 | 341 344 | eqeltrd | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐸 ‘ 𝑎 )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 346 |  | eleq1 | ⊢ ( ( 𝐸 ‘ 𝑎 )  =  𝑓  →  ( ( 𝐸 ‘ 𝑎 )  ∈  ( Poly ‘ 𝑆 )  ↔  𝑓  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 347 | 345 346 | syl5ibcom | ⊢ ( ( 𝑆  ∈  ( SubRing ‘ ℂfld )  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝐸 ‘ 𝑎 )  =  𝑓  →  𝑓  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 348 | 347 | rexlimdva | ⊢ ( 𝑆  ∈  ( SubRing ‘ ℂfld )  →  ( ∃ 𝑎  ∈  𝐴 ( 𝐸 ‘ 𝑎 )  =  𝑓  →  𝑓  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 349 | 151 348 | syl5 | ⊢ ( 𝑆  ∈  ( SubRing ‘ ℂfld )  →  ( 𝑓  ∈  ( 𝐸  “  𝐴 )  →  𝑓  ∈  ( Poly ‘ 𝑆 ) ) ) | 
						
							| 350 | 147 349 | impbid | ⊢ ( 𝑆  ∈  ( SubRing ‘ ℂfld )  →  ( 𝑓  ∈  ( Poly ‘ 𝑆 )  ↔  𝑓  ∈  ( 𝐸  “  𝐴 ) ) ) | 
						
							| 351 | 350 | eqrdv | ⊢ ( 𝑆  ∈  ( SubRing ‘ ℂfld )  →  ( Poly ‘ 𝑆 )  =  ( 𝐸  “  𝐴 ) ) |