| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyrem.1 | ⊢ 𝐺  =  ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) ) | 
						
							| 2 |  | plyrem.2 | ⊢ 𝑅  =  ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) ) | 
						
							| 3 |  | plyssc | ⊢ ( Poly ‘ 𝑆 )  ⊆  ( Poly ‘ ℂ ) | 
						
							| 4 |  | simpl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 5 | 3 4 | sselid | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  𝐹  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 6 | 1 | plyremlem | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐺  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝐺 )  =  1  ∧  ( ◡ 𝐺  “  { 0 } )  =  { 𝐴 } ) ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( 𝐺  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝐺 )  =  1  ∧  ( ◡ 𝐺  “  { 0 } )  =  { 𝐴 } ) ) | 
						
							| 8 | 7 | simp1d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  𝐺  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 9 | 7 | simp2d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( deg ‘ 𝐺 )  =  1 ) | 
						
							| 10 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  1  ≠  0 ) | 
						
							| 12 | 9 11 | eqnetrd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( deg ‘ 𝐺 )  ≠  0 ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝐺  =  0𝑝  →  ( deg ‘ 𝐺 )  =  ( deg ‘ 0𝑝 ) ) | 
						
							| 14 |  | dgr0 | ⊢ ( deg ‘ 0𝑝 )  =  0 | 
						
							| 15 | 13 14 | eqtrdi | ⊢ ( 𝐺  =  0𝑝  →  ( deg ‘ 𝐺 )  =  0 ) | 
						
							| 16 | 15 | necon3i | ⊢ ( ( deg ‘ 𝐺 )  ≠  0  →  𝐺  ≠  0𝑝 ) | 
						
							| 17 | 12 16 | syl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  𝐺  ≠  0𝑝 ) | 
						
							| 18 | 2 | quotdgr | ⊢ ( ( 𝐹  ∈  ( Poly ‘ ℂ )  ∧  𝐺  ∈  ( Poly ‘ ℂ )  ∧  𝐺  ≠  0𝑝 )  →  ( 𝑅  =  0𝑝  ∨  ( deg ‘ 𝑅 )  <  ( deg ‘ 𝐺 ) ) ) | 
						
							| 19 | 5 8 17 18 | syl3anc | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( 𝑅  =  0𝑝  ∨  ( deg ‘ 𝑅 )  <  ( deg ‘ 𝐺 ) ) ) | 
						
							| 20 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 21 | 20 9 | breqtrrid | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  0  <  ( deg ‘ 𝐺 ) ) | 
						
							| 22 |  | fveq2 | ⊢ ( 𝑅  =  0𝑝  →  ( deg ‘ 𝑅 )  =  ( deg ‘ 0𝑝 ) ) | 
						
							| 23 | 22 14 | eqtrdi | ⊢ ( 𝑅  =  0𝑝  →  ( deg ‘ 𝑅 )  =  0 ) | 
						
							| 24 | 23 | breq1d | ⊢ ( 𝑅  =  0𝑝  →  ( ( deg ‘ 𝑅 )  <  ( deg ‘ 𝐺 )  ↔  0  <  ( deg ‘ 𝐺 ) ) ) | 
						
							| 25 | 21 24 | syl5ibrcom | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( 𝑅  =  0𝑝  →  ( deg ‘ 𝑅 )  <  ( deg ‘ 𝐺 ) ) ) | 
						
							| 26 |  | pm2.62 | ⊢ ( ( 𝑅  =  0𝑝  ∨  ( deg ‘ 𝑅 )  <  ( deg ‘ 𝐺 ) )  →  ( ( 𝑅  =  0𝑝  →  ( deg ‘ 𝑅 )  <  ( deg ‘ 𝐺 ) )  →  ( deg ‘ 𝑅 )  <  ( deg ‘ 𝐺 ) ) ) | 
						
							| 27 | 19 25 26 | sylc | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( deg ‘ 𝑅 )  <  ( deg ‘ 𝐺 ) ) | 
						
							| 28 | 27 9 | breqtrd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( deg ‘ 𝑅 )  <  1 ) | 
						
							| 29 |  | quotcl2 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ ℂ )  ∧  𝐺  ∈  ( Poly ‘ ℂ )  ∧  𝐺  ≠  0𝑝 )  →  ( 𝐹  quot  𝐺 )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 30 | 5 8 17 29 | syl3anc | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( 𝐹  quot  𝐺 )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 31 |  | plymulcl | ⊢ ( ( 𝐺  ∈  ( Poly ‘ ℂ )  ∧  ( 𝐹  quot  𝐺 )  ∈  ( Poly ‘ ℂ ) )  →  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 32 | 8 30 31 | syl2anc | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 33 |  | plysubcl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ ℂ )  ∧  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) )  ∈  ( Poly ‘ ℂ ) )  →  ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 34 | 5 32 33 | syl2anc | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 35 | 2 34 | eqeltrid | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  𝑅  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 36 |  | dgrcl | ⊢ ( 𝑅  ∈  ( Poly ‘ ℂ )  →  ( deg ‘ 𝑅 )  ∈  ℕ0 ) | 
						
							| 37 | 35 36 | syl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( deg ‘ 𝑅 )  ∈  ℕ0 ) | 
						
							| 38 |  | nn0lt10b | ⊢ ( ( deg ‘ 𝑅 )  ∈  ℕ0  →  ( ( deg ‘ 𝑅 )  <  1  ↔  ( deg ‘ 𝑅 )  =  0 ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( ( deg ‘ 𝑅 )  <  1  ↔  ( deg ‘ 𝑅 )  =  0 ) ) | 
						
							| 40 | 28 39 | mpbid | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( deg ‘ 𝑅 )  =  0 ) | 
						
							| 41 |  | 0dgrb | ⊢ ( 𝑅  ∈  ( Poly ‘ ℂ )  →  ( ( deg ‘ 𝑅 )  =  0  ↔  𝑅  =  ( ℂ  ×  { ( 𝑅 ‘ 0 ) } ) ) ) | 
						
							| 42 | 35 41 | syl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( ( deg ‘ 𝑅 )  =  0  ↔  𝑅  =  ( ℂ  ×  { ( 𝑅 ‘ 0 ) } ) ) ) | 
						
							| 43 | 40 42 | mpbid | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  𝑅  =  ( ℂ  ×  { ( 𝑅 ‘ 0 ) } ) ) | 
						
							| 44 | 43 | fveq1d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( 𝑅 ‘ 𝐴 )  =  ( ( ℂ  ×  { ( 𝑅 ‘ 0 ) } ) ‘ 𝐴 ) ) | 
						
							| 45 | 2 | fveq1i | ⊢ ( 𝑅 ‘ 𝐴 )  =  ( ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) ) ‘ 𝐴 ) | 
						
							| 46 |  | plyf | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 48 | 47 | ffnd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  𝐹  Fn  ℂ ) | 
						
							| 49 |  | plyf | ⊢ ( 𝐺  ∈  ( Poly ‘ ℂ )  →  𝐺 : ℂ ⟶ ℂ ) | 
						
							| 50 | 8 49 | syl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  𝐺 : ℂ ⟶ ℂ ) | 
						
							| 51 | 50 | ffnd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  𝐺  Fn  ℂ ) | 
						
							| 52 |  | plyf | ⊢ ( ( 𝐹  quot  𝐺 )  ∈  ( Poly ‘ ℂ )  →  ( 𝐹  quot  𝐺 ) : ℂ ⟶ ℂ ) | 
						
							| 53 | 30 52 | syl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( 𝐹  quot  𝐺 ) : ℂ ⟶ ℂ ) | 
						
							| 54 | 53 | ffnd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( 𝐹  quot  𝐺 )  Fn  ℂ ) | 
						
							| 55 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 56 | 55 | a1i | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ℂ  ∈  V ) | 
						
							| 57 |  | inidm | ⊢ ( ℂ  ∩  ℂ )  =  ℂ | 
						
							| 58 | 51 54 56 56 57 | offn | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) )  Fn  ℂ ) | 
						
							| 59 |  | eqidd | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  ∧  𝐴  ∈  ℂ )  →  ( 𝐹 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 60 | 7 | simp3d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( ◡ 𝐺  “  { 0 } )  =  { 𝐴 } ) | 
						
							| 61 |  | ssun1 | ⊢ ( ◡ 𝐺  “  { 0 } )  ⊆  ( ( ◡ 𝐺  “  { 0 } )  ∪  ( ◡ ( 𝐹  quot  𝐺 )  “  { 0 } ) ) | 
						
							| 62 | 60 61 | eqsstrrdi | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  { 𝐴 }  ⊆  ( ( ◡ 𝐺  “  { 0 } )  ∪  ( ◡ ( 𝐹  quot  𝐺 )  “  { 0 } ) ) ) | 
						
							| 63 |  | snssg | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  ∈  ( ( ◡ 𝐺  “  { 0 } )  ∪  ( ◡ ( 𝐹  quot  𝐺 )  “  { 0 } ) )  ↔  { 𝐴 }  ⊆  ( ( ◡ 𝐺  “  { 0 } )  ∪  ( ◡ ( 𝐹  quot  𝐺 )  “  { 0 } ) ) ) ) | 
						
							| 64 | 63 | adantl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( 𝐴  ∈  ( ( ◡ 𝐺  “  { 0 } )  ∪  ( ◡ ( 𝐹  quot  𝐺 )  “  { 0 } ) )  ↔  { 𝐴 }  ⊆  ( ( ◡ 𝐺  “  { 0 } )  ∪  ( ◡ ( 𝐹  quot  𝐺 )  “  { 0 } ) ) ) ) | 
						
							| 65 | 62 64 | mpbird | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  𝐴  ∈  ( ( ◡ 𝐺  “  { 0 } )  ∪  ( ◡ ( 𝐹  quot  𝐺 )  “  { 0 } ) ) ) | 
						
							| 66 |  | ofmulrt | ⊢ ( ( ℂ  ∈  V  ∧  𝐺 : ℂ ⟶ ℂ  ∧  ( 𝐹  quot  𝐺 ) : ℂ ⟶ ℂ )  →  ( ◡ ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) )  “  { 0 } )  =  ( ( ◡ 𝐺  “  { 0 } )  ∪  ( ◡ ( 𝐹  quot  𝐺 )  “  { 0 } ) ) ) | 
						
							| 67 | 56 50 53 66 | syl3anc | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( ◡ ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) )  “  { 0 } )  =  ( ( ◡ 𝐺  “  { 0 } )  ∪  ( ◡ ( 𝐹  quot  𝐺 )  “  { 0 } ) ) ) | 
						
							| 68 | 65 67 | eleqtrrd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  𝐴  ∈  ( ◡ ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) )  “  { 0 } ) ) | 
						
							| 69 |  | fniniseg | ⊢ ( ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) )  Fn  ℂ  →  ( 𝐴  ∈  ( ◡ ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) )  “  { 0 } )  ↔  ( 𝐴  ∈  ℂ  ∧  ( ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) ‘ 𝐴 )  =  0 ) ) ) | 
						
							| 70 | 58 69 | syl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( 𝐴  ∈  ( ◡ ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) )  “  { 0 } )  ↔  ( 𝐴  ∈  ℂ  ∧  ( ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) ‘ 𝐴 )  =  0 ) ) ) | 
						
							| 71 | 68 70 | mpbid | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( 𝐴  ∈  ℂ  ∧  ( ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) ‘ 𝐴 )  =  0 ) ) | 
						
							| 72 | 71 | simprd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) ‘ 𝐴 )  =  0 ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  ∧  𝐴  ∈  ℂ )  →  ( ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) ‘ 𝐴 )  =  0 ) | 
						
							| 74 | 48 58 56 56 57 59 73 | ofval | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  ∧  𝐴  ∈  ℂ )  →  ( ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) ) ‘ 𝐴 )  =  ( ( 𝐹 ‘ 𝐴 )  −  0 ) ) | 
						
							| 75 | 74 | anabss3 | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( ( 𝐹  ∘f   −  ( 𝐺  ∘f   ·  ( 𝐹  quot  𝐺 ) ) ) ‘ 𝐴 )  =  ( ( 𝐹 ‘ 𝐴 )  −  0 ) ) | 
						
							| 76 | 45 75 | eqtrid | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( 𝑅 ‘ 𝐴 )  =  ( ( 𝐹 ‘ 𝐴 )  −  0 ) ) | 
						
							| 77 | 46 | ffvelcdmda | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( 𝐹 ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 78 | 77 | subid1d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( ( 𝐹 ‘ 𝐴 )  −  0 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 79 | 76 78 | eqtrd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( 𝑅 ‘ 𝐴 )  =  ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 80 |  | fvex | ⊢ ( 𝑅 ‘ 0 )  ∈  V | 
						
							| 81 | 80 | fvconst2 | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℂ  ×  { ( 𝑅 ‘ 0 ) } ) ‘ 𝐴 )  =  ( 𝑅 ‘ 0 ) ) | 
						
							| 82 | 81 | adantl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( ( ℂ  ×  { ( 𝑅 ‘ 0 ) } ) ‘ 𝐴 )  =  ( 𝑅 ‘ 0 ) ) | 
						
							| 83 | 44 79 82 | 3eqtr3d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( 𝐹 ‘ 𝐴 )  =  ( 𝑅 ‘ 0 ) ) | 
						
							| 84 | 83 | sneqd | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  { ( 𝐹 ‘ 𝐴 ) }  =  { ( 𝑅 ‘ 0 ) } ) | 
						
							| 85 | 84 | xpeq2d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  ( ℂ  ×  { ( 𝐹 ‘ 𝐴 ) } )  =  ( ℂ  ×  { ( 𝑅 ‘ 0 ) } ) ) | 
						
							| 86 | 43 85 | eqtr4d | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐴  ∈  ℂ )  →  𝑅  =  ( ℂ  ×  { ( 𝐹 ‘ 𝐴 ) } ) ) |