Step |
Hyp |
Ref |
Expression |
1 |
|
plyrem.1 |
⊢ 𝐺 = ( Xp ∘f − ( ℂ × { 𝐴 } ) ) |
2 |
|
ssid |
⊢ ℂ ⊆ ℂ |
3 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
4 |
|
plyid |
⊢ ( ( ℂ ⊆ ℂ ∧ 1 ∈ ℂ ) → Xp ∈ ( Poly ‘ ℂ ) ) |
5 |
2 3 4
|
mp2an |
⊢ Xp ∈ ( Poly ‘ ℂ ) |
6 |
|
plyconst |
⊢ ( ( ℂ ⊆ ℂ ∧ 𝐴 ∈ ℂ ) → ( ℂ × { 𝐴 } ) ∈ ( Poly ‘ ℂ ) ) |
7 |
2 6
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( ℂ × { 𝐴 } ) ∈ ( Poly ‘ ℂ ) ) |
8 |
|
plysubcl |
⊢ ( ( Xp ∈ ( Poly ‘ ℂ ) ∧ ( ℂ × { 𝐴 } ) ∈ ( Poly ‘ ℂ ) ) → ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∈ ( Poly ‘ ℂ ) ) |
9 |
5 7 8
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ∈ ( Poly ‘ ℂ ) ) |
10 |
1 9
|
eqeltrid |
⊢ ( 𝐴 ∈ ℂ → 𝐺 ∈ ( Poly ‘ ℂ ) ) |
11 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
12 |
|
addcom |
⊢ ( ( - 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( - 𝐴 + 𝑧 ) = ( 𝑧 + - 𝐴 ) ) |
13 |
11 12
|
sylan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( - 𝐴 + 𝑧 ) = ( 𝑧 + - 𝐴 ) ) |
14 |
|
negsub |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝑧 + - 𝐴 ) = ( 𝑧 − 𝐴 ) ) |
15 |
14
|
ancoms |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝑧 + - 𝐴 ) = ( 𝑧 − 𝐴 ) ) |
16 |
13 15
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( - 𝐴 + 𝑧 ) = ( 𝑧 − 𝐴 ) ) |
17 |
16
|
mpteq2dva |
⊢ ( 𝐴 ∈ ℂ → ( 𝑧 ∈ ℂ ↦ ( - 𝐴 + 𝑧 ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝐴 ) ) ) |
18 |
|
cnex |
⊢ ℂ ∈ V |
19 |
18
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ℂ ∈ V ) |
20 |
|
negex |
⊢ - 𝐴 ∈ V |
21 |
20
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → - 𝐴 ∈ V ) |
22 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → 𝑧 ∈ ℂ ) |
23 |
|
fconstmpt |
⊢ ( ℂ × { - 𝐴 } ) = ( 𝑧 ∈ ℂ ↦ - 𝐴 ) |
24 |
23
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( ℂ × { - 𝐴 } ) = ( 𝑧 ∈ ℂ ↦ - 𝐴 ) ) |
25 |
|
df-idp |
⊢ Xp = ( I ↾ ℂ ) |
26 |
|
mptresid |
⊢ ( I ↾ ℂ ) = ( 𝑧 ∈ ℂ ↦ 𝑧 ) |
27 |
25 26
|
eqtri |
⊢ Xp = ( 𝑧 ∈ ℂ ↦ 𝑧 ) |
28 |
27
|
a1i |
⊢ ( 𝐴 ∈ ℂ → Xp = ( 𝑧 ∈ ℂ ↦ 𝑧 ) ) |
29 |
19 21 22 24 28
|
offval2 |
⊢ ( 𝐴 ∈ ℂ → ( ( ℂ × { - 𝐴 } ) ∘f + Xp ) = ( 𝑧 ∈ ℂ ↦ ( - 𝐴 + 𝑧 ) ) ) |
30 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → 𝐴 ∈ ℂ ) |
31 |
|
fconstmpt |
⊢ ( ℂ × { 𝐴 } ) = ( 𝑧 ∈ ℂ ↦ 𝐴 ) |
32 |
31
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( ℂ × { 𝐴 } ) = ( 𝑧 ∈ ℂ ↦ 𝐴 ) ) |
33 |
19 22 30 28 32
|
offval2 |
⊢ ( 𝐴 ∈ ℂ → ( Xp ∘f − ( ℂ × { 𝐴 } ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝐴 ) ) ) |
34 |
17 29 33
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( ℂ × { - 𝐴 } ) ∘f + Xp ) = ( Xp ∘f − ( ℂ × { 𝐴 } ) ) ) |
35 |
34 1
|
eqtr4di |
⊢ ( 𝐴 ∈ ℂ → ( ( ℂ × { - 𝐴 } ) ∘f + Xp ) = 𝐺 ) |
36 |
35
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( deg ‘ ( ( ℂ × { - 𝐴 } ) ∘f + Xp ) ) = ( deg ‘ 𝐺 ) ) |
37 |
|
plyconst |
⊢ ( ( ℂ ⊆ ℂ ∧ - 𝐴 ∈ ℂ ) → ( ℂ × { - 𝐴 } ) ∈ ( Poly ‘ ℂ ) ) |
38 |
2 11 37
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( ℂ × { - 𝐴 } ) ∈ ( Poly ‘ ℂ ) ) |
39 |
5
|
a1i |
⊢ ( 𝐴 ∈ ℂ → Xp ∈ ( Poly ‘ ℂ ) ) |
40 |
|
0dgr |
⊢ ( - 𝐴 ∈ ℂ → ( deg ‘ ( ℂ × { - 𝐴 } ) ) = 0 ) |
41 |
11 40
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( deg ‘ ( ℂ × { - 𝐴 } ) ) = 0 ) |
42 |
|
0lt1 |
⊢ 0 < 1 |
43 |
41 42
|
eqbrtrdi |
⊢ ( 𝐴 ∈ ℂ → ( deg ‘ ( ℂ × { - 𝐴 } ) ) < 1 ) |
44 |
|
eqid |
⊢ ( deg ‘ ( ℂ × { - 𝐴 } ) ) = ( deg ‘ ( ℂ × { - 𝐴 } ) ) |
45 |
|
dgrid |
⊢ ( deg ‘ Xp ) = 1 |
46 |
45
|
eqcomi |
⊢ 1 = ( deg ‘ Xp ) |
47 |
44 46
|
dgradd2 |
⊢ ( ( ( ℂ × { - 𝐴 } ) ∈ ( Poly ‘ ℂ ) ∧ Xp ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ ( ℂ × { - 𝐴 } ) ) < 1 ) → ( deg ‘ ( ( ℂ × { - 𝐴 } ) ∘f + Xp ) ) = 1 ) |
48 |
38 39 43 47
|
syl3anc |
⊢ ( 𝐴 ∈ ℂ → ( deg ‘ ( ( ℂ × { - 𝐴 } ) ∘f + Xp ) ) = 1 ) |
49 |
36 48
|
eqtr3d |
⊢ ( 𝐴 ∈ ℂ → ( deg ‘ 𝐺 ) = 1 ) |
50 |
1 33
|
syl5eq |
⊢ ( 𝐴 ∈ ℂ → 𝐺 = ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝐴 ) ) ) |
51 |
50
|
fveq1d |
⊢ ( 𝐴 ∈ ℂ → ( 𝐺 ‘ 𝑧 ) = ( ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝐴 ) ) ‘ 𝑧 ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝐺 ‘ 𝑧 ) = ( ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝐴 ) ) ‘ 𝑧 ) ) |
53 |
|
ovex |
⊢ ( 𝑧 − 𝐴 ) ∈ V |
54 |
|
eqid |
⊢ ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝐴 ) ) = ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝐴 ) ) |
55 |
54
|
fvmpt2 |
⊢ ( ( 𝑧 ∈ ℂ ∧ ( 𝑧 − 𝐴 ) ∈ V ) → ( ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝐴 ) ) ‘ 𝑧 ) = ( 𝑧 − 𝐴 ) ) |
56 |
22 53 55
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑧 ∈ ℂ ↦ ( 𝑧 − 𝐴 ) ) ‘ 𝑧 ) = ( 𝑧 − 𝐴 ) ) |
57 |
52 56
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( 𝐺 ‘ 𝑧 ) = ( 𝑧 − 𝐴 ) ) |
58 |
57
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝐺 ‘ 𝑧 ) = 0 ↔ ( 𝑧 − 𝐴 ) = 0 ) ) |
59 |
|
subeq0 |
⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝑧 − 𝐴 ) = 0 ↔ 𝑧 = 𝐴 ) ) |
60 |
59
|
ancoms |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝑧 − 𝐴 ) = 0 ↔ 𝑧 = 𝐴 ) ) |
61 |
58 60
|
bitrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ ) → ( ( 𝐺 ‘ 𝑧 ) = 0 ↔ 𝑧 = 𝐴 ) ) |
62 |
61
|
pm5.32da |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑧 ∈ ℂ ∧ ( 𝐺 ‘ 𝑧 ) = 0 ) ↔ ( 𝑧 ∈ ℂ ∧ 𝑧 = 𝐴 ) ) ) |
63 |
|
plyf |
⊢ ( 𝐺 ∈ ( Poly ‘ ℂ ) → 𝐺 : ℂ ⟶ ℂ ) |
64 |
|
ffn |
⊢ ( 𝐺 : ℂ ⟶ ℂ → 𝐺 Fn ℂ ) |
65 |
|
fniniseg |
⊢ ( 𝐺 Fn ℂ → ( 𝑧 ∈ ( ◡ 𝐺 “ { 0 } ) ↔ ( 𝑧 ∈ ℂ ∧ ( 𝐺 ‘ 𝑧 ) = 0 ) ) ) |
66 |
10 63 64 65
|
4syl |
⊢ ( 𝐴 ∈ ℂ → ( 𝑧 ∈ ( ◡ 𝐺 “ { 0 } ) ↔ ( 𝑧 ∈ ℂ ∧ ( 𝐺 ‘ 𝑧 ) = 0 ) ) ) |
67 |
|
eleq1a |
⊢ ( 𝐴 ∈ ℂ → ( 𝑧 = 𝐴 → 𝑧 ∈ ℂ ) ) |
68 |
67
|
pm4.71rd |
⊢ ( 𝐴 ∈ ℂ → ( 𝑧 = 𝐴 ↔ ( 𝑧 ∈ ℂ ∧ 𝑧 = 𝐴 ) ) ) |
69 |
62 66 68
|
3bitr4d |
⊢ ( 𝐴 ∈ ℂ → ( 𝑧 ∈ ( ◡ 𝐺 “ { 0 } ) ↔ 𝑧 = 𝐴 ) ) |
70 |
|
velsn |
⊢ ( 𝑧 ∈ { 𝐴 } ↔ 𝑧 = 𝐴 ) |
71 |
69 70
|
bitr4di |
⊢ ( 𝐴 ∈ ℂ → ( 𝑧 ∈ ( ◡ 𝐺 “ { 0 } ) ↔ 𝑧 ∈ { 𝐴 } ) ) |
72 |
71
|
eqrdv |
⊢ ( 𝐴 ∈ ℂ → ( ◡ 𝐺 “ { 0 } ) = { 𝐴 } ) |
73 |
10 49 72
|
3jca |
⊢ ( 𝐴 ∈ ℂ → ( 𝐺 ∈ ( Poly ‘ ℂ ) ∧ ( deg ‘ 𝐺 ) = 1 ∧ ( ◡ 𝐺 “ { 0 } ) = { 𝐴 } ) ) |