| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyrem.1 | ⊢ 𝐺  =  ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) ) | 
						
							| 2 |  | ssid | ⊢ ℂ  ⊆  ℂ | 
						
							| 3 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 4 |  | plyid | ⊢ ( ( ℂ  ⊆  ℂ  ∧  1  ∈  ℂ )  →  Xp  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 5 | 2 3 4 | mp2an | ⊢ Xp  ∈  ( Poly ‘ ℂ ) | 
						
							| 6 |  | plyconst | ⊢ ( ( ℂ  ⊆  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ℂ  ×  { 𝐴 } )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 7 | 2 6 | mpan | ⊢ ( 𝐴  ∈  ℂ  →  ( ℂ  ×  { 𝐴 } )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 8 |  | plysubcl | ⊢ ( ( Xp  ∈  ( Poly ‘ ℂ )  ∧  ( ℂ  ×  { 𝐴 } )  ∈  ( Poly ‘ ℂ ) )  →  ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 9 | 5 7 8 | sylancr | ⊢ ( 𝐴  ∈  ℂ  →  ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 10 | 1 9 | eqeltrid | ⊢ ( 𝐴  ∈  ℂ  →  𝐺  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 11 |  | negcl | ⊢ ( 𝐴  ∈  ℂ  →  - 𝐴  ∈  ℂ ) | 
						
							| 12 |  | addcom | ⊢ ( ( - 𝐴  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( - 𝐴  +  𝑧 )  =  ( 𝑧  +  - 𝐴 ) ) | 
						
							| 13 | 11 12 | sylan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( - 𝐴  +  𝑧 )  =  ( 𝑧  +  - 𝐴 ) ) | 
						
							| 14 |  | negsub | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( 𝑧  +  - 𝐴 )  =  ( 𝑧  −  𝐴 ) ) | 
						
							| 15 | 14 | ancoms | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( 𝑧  +  - 𝐴 )  =  ( 𝑧  −  𝐴 ) ) | 
						
							| 16 | 13 15 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( - 𝐴  +  𝑧 )  =  ( 𝑧  −  𝐴 ) ) | 
						
							| 17 | 16 | mpteq2dva | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝑧  ∈  ℂ  ↦  ( - 𝐴  +  𝑧 ) )  =  ( 𝑧  ∈  ℂ  ↦  ( 𝑧  −  𝐴 ) ) ) | 
						
							| 18 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 19 | 18 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  ℂ  ∈  V ) | 
						
							| 20 |  | negex | ⊢ - 𝐴  ∈  V | 
						
							| 21 | 20 | a1i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  - 𝐴  ∈  V ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  𝑧  ∈  ℂ ) | 
						
							| 23 |  | fconstmpt | ⊢ ( ℂ  ×  { - 𝐴 } )  =  ( 𝑧  ∈  ℂ  ↦  - 𝐴 ) | 
						
							| 24 | 23 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  ( ℂ  ×  { - 𝐴 } )  =  ( 𝑧  ∈  ℂ  ↦  - 𝐴 ) ) | 
						
							| 25 |  | df-idp | ⊢ Xp  =  (  I   ↾  ℂ ) | 
						
							| 26 |  | mptresid | ⊢ (  I   ↾  ℂ )  =  ( 𝑧  ∈  ℂ  ↦  𝑧 ) | 
						
							| 27 | 25 26 | eqtri | ⊢ Xp  =  ( 𝑧  ∈  ℂ  ↦  𝑧 ) | 
						
							| 28 | 27 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  Xp  =  ( 𝑧  ∈  ℂ  ↦  𝑧 ) ) | 
						
							| 29 | 19 21 22 24 28 | offval2 | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℂ  ×  { - 𝐴 } )  ∘f   +  Xp )  =  ( 𝑧  ∈  ℂ  ↦  ( - 𝐴  +  𝑧 ) ) ) | 
						
							| 30 |  | simpl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  𝐴  ∈  ℂ ) | 
						
							| 31 |  | fconstmpt | ⊢ ( ℂ  ×  { 𝐴 } )  =  ( 𝑧  ∈  ℂ  ↦  𝐴 ) | 
						
							| 32 | 31 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  ( ℂ  ×  { 𝐴 } )  =  ( 𝑧  ∈  ℂ  ↦  𝐴 ) ) | 
						
							| 33 | 19 22 30 28 32 | offval2 | ⊢ ( 𝐴  ∈  ℂ  →  ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) )  =  ( 𝑧  ∈  ℂ  ↦  ( 𝑧  −  𝐴 ) ) ) | 
						
							| 34 | 17 29 33 | 3eqtr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℂ  ×  { - 𝐴 } )  ∘f   +  Xp )  =  ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) ) ) | 
						
							| 35 | 34 1 | eqtr4di | ⊢ ( 𝐴  ∈  ℂ  →  ( ( ℂ  ×  { - 𝐴 } )  ∘f   +  Xp )  =  𝐺 ) | 
						
							| 36 | 35 | fveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( deg ‘ ( ( ℂ  ×  { - 𝐴 } )  ∘f   +  Xp ) )  =  ( deg ‘ 𝐺 ) ) | 
						
							| 37 |  | plyconst | ⊢ ( ( ℂ  ⊆  ℂ  ∧  - 𝐴  ∈  ℂ )  →  ( ℂ  ×  { - 𝐴 } )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 38 | 2 11 37 | sylancr | ⊢ ( 𝐴  ∈  ℂ  →  ( ℂ  ×  { - 𝐴 } )  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 39 | 5 | a1i | ⊢ ( 𝐴  ∈  ℂ  →  Xp  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 40 |  | 0dgr | ⊢ ( - 𝐴  ∈  ℂ  →  ( deg ‘ ( ℂ  ×  { - 𝐴 } ) )  =  0 ) | 
						
							| 41 | 11 40 | syl | ⊢ ( 𝐴  ∈  ℂ  →  ( deg ‘ ( ℂ  ×  { - 𝐴 } ) )  =  0 ) | 
						
							| 42 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 43 | 41 42 | eqbrtrdi | ⊢ ( 𝐴  ∈  ℂ  →  ( deg ‘ ( ℂ  ×  { - 𝐴 } ) )  <  1 ) | 
						
							| 44 |  | eqid | ⊢ ( deg ‘ ( ℂ  ×  { - 𝐴 } ) )  =  ( deg ‘ ( ℂ  ×  { - 𝐴 } ) ) | 
						
							| 45 |  | dgrid | ⊢ ( deg ‘ Xp )  =  1 | 
						
							| 46 | 45 | eqcomi | ⊢ 1  =  ( deg ‘ Xp ) | 
						
							| 47 | 44 46 | dgradd2 | ⊢ ( ( ( ℂ  ×  { - 𝐴 } )  ∈  ( Poly ‘ ℂ )  ∧  Xp  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ ( ℂ  ×  { - 𝐴 } ) )  <  1 )  →  ( deg ‘ ( ( ℂ  ×  { - 𝐴 } )  ∘f   +  Xp ) )  =  1 ) | 
						
							| 48 | 38 39 43 47 | syl3anc | ⊢ ( 𝐴  ∈  ℂ  →  ( deg ‘ ( ( ℂ  ×  { - 𝐴 } )  ∘f   +  Xp ) )  =  1 ) | 
						
							| 49 | 36 48 | eqtr3d | ⊢ ( 𝐴  ∈  ℂ  →  ( deg ‘ 𝐺 )  =  1 ) | 
						
							| 50 | 1 33 | eqtrid | ⊢ ( 𝐴  ∈  ℂ  →  𝐺  =  ( 𝑧  ∈  ℂ  ↦  ( 𝑧  −  𝐴 ) ) ) | 
						
							| 51 | 50 | fveq1d | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐺 ‘ 𝑧 )  =  ( ( 𝑧  ∈  ℂ  ↦  ( 𝑧  −  𝐴 ) ) ‘ 𝑧 ) ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( 𝐺 ‘ 𝑧 )  =  ( ( 𝑧  ∈  ℂ  ↦  ( 𝑧  −  𝐴 ) ) ‘ 𝑧 ) ) | 
						
							| 53 |  | ovex | ⊢ ( 𝑧  −  𝐴 )  ∈  V | 
						
							| 54 |  | eqid | ⊢ ( 𝑧  ∈  ℂ  ↦  ( 𝑧  −  𝐴 ) )  =  ( 𝑧  ∈  ℂ  ↦  ( 𝑧  −  𝐴 ) ) | 
						
							| 55 | 54 | fvmpt2 | ⊢ ( ( 𝑧  ∈  ℂ  ∧  ( 𝑧  −  𝐴 )  ∈  V )  →  ( ( 𝑧  ∈  ℂ  ↦  ( 𝑧  −  𝐴 ) ) ‘ 𝑧 )  =  ( 𝑧  −  𝐴 ) ) | 
						
							| 56 | 22 53 55 | sylancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑧  ∈  ℂ  ↦  ( 𝑧  −  𝐴 ) ) ‘ 𝑧 )  =  ( 𝑧  −  𝐴 ) ) | 
						
							| 57 | 52 56 | eqtrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( 𝐺 ‘ 𝑧 )  =  ( 𝑧  −  𝐴 ) ) | 
						
							| 58 | 57 | eqeq1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( ( 𝐺 ‘ 𝑧 )  =  0  ↔  ( 𝑧  −  𝐴 )  =  0 ) ) | 
						
							| 59 |  | subeq0 | ⊢ ( ( 𝑧  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( 𝑧  −  𝐴 )  =  0  ↔  𝑧  =  𝐴 ) ) | 
						
							| 60 | 59 | ancoms | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( ( 𝑧  −  𝐴 )  =  0  ↔  𝑧  =  𝐴 ) ) | 
						
							| 61 | 58 60 | bitrd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑧  ∈  ℂ )  →  ( ( 𝐺 ‘ 𝑧 )  =  0  ↔  𝑧  =  𝐴 ) ) | 
						
							| 62 | 61 | pm5.32da | ⊢ ( 𝐴  ∈  ℂ  →  ( ( 𝑧  ∈  ℂ  ∧  ( 𝐺 ‘ 𝑧 )  =  0 )  ↔  ( 𝑧  ∈  ℂ  ∧  𝑧  =  𝐴 ) ) ) | 
						
							| 63 |  | plyf | ⊢ ( 𝐺  ∈  ( Poly ‘ ℂ )  →  𝐺 : ℂ ⟶ ℂ ) | 
						
							| 64 |  | ffn | ⊢ ( 𝐺 : ℂ ⟶ ℂ  →  𝐺  Fn  ℂ ) | 
						
							| 65 |  | fniniseg | ⊢ ( 𝐺  Fn  ℂ  →  ( 𝑧  ∈  ( ◡ 𝐺  “  { 0 } )  ↔  ( 𝑧  ∈  ℂ  ∧  ( 𝐺 ‘ 𝑧 )  =  0 ) ) ) | 
						
							| 66 | 10 63 64 65 | 4syl | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝑧  ∈  ( ◡ 𝐺  “  { 0 } )  ↔  ( 𝑧  ∈  ℂ  ∧  ( 𝐺 ‘ 𝑧 )  =  0 ) ) ) | 
						
							| 67 |  | eleq1a | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝑧  =  𝐴  →  𝑧  ∈  ℂ ) ) | 
						
							| 68 | 67 | pm4.71rd | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝑧  =  𝐴  ↔  ( 𝑧  ∈  ℂ  ∧  𝑧  =  𝐴 ) ) ) | 
						
							| 69 | 62 66 68 | 3bitr4d | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝑧  ∈  ( ◡ 𝐺  “  { 0 } )  ↔  𝑧  =  𝐴 ) ) | 
						
							| 70 |  | velsn | ⊢ ( 𝑧  ∈  { 𝐴 }  ↔  𝑧  =  𝐴 ) | 
						
							| 71 | 69 70 | bitr4di | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝑧  ∈  ( ◡ 𝐺  “  { 0 } )  ↔  𝑧  ∈  { 𝐴 } ) ) | 
						
							| 72 | 71 | eqrdv | ⊢ ( 𝐴  ∈  ℂ  →  ( ◡ 𝐺  “  { 0 } )  =  { 𝐴 } ) | 
						
							| 73 | 10 49 72 | 3jca | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐺  ∈  ( Poly ‘ ℂ )  ∧  ( deg ‘ 𝐺 )  =  1  ∧  ( ◡ 𝐺  “  { 0 } )  =  { 𝐴 } ) ) |