Step |
Hyp |
Ref |
Expression |
1 |
|
plybss |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ℝ ⊆ ℂ ) |
2 |
|
plyf |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → 𝐹 : ℂ ⟶ ℂ ) |
3 |
|
ffn |
⊢ ( 𝐹 : ℂ ⟶ ℂ → 𝐹 Fn ℂ ) |
4 |
|
fnssresb |
⊢ ( 𝐹 Fn ℂ → ( ( 𝐹 ↾ ℝ ) Fn ℝ ↔ ℝ ⊆ ℂ ) ) |
5 |
2 3 4
|
3syl |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( ( 𝐹 ↾ ℝ ) Fn ℝ ↔ ℝ ⊆ ℂ ) ) |
6 |
1 5
|
mpbird |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝐹 ↾ ℝ ) Fn ℝ ) |
7 |
|
fvres |
⊢ ( 𝑎 ∈ ℝ → ( ( 𝐹 ↾ ℝ ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑎 ∈ ℝ ) → ( ( 𝐹 ↾ ℝ ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) |
9 |
|
recn |
⊢ ( 𝑎 ∈ ℝ → 𝑎 ∈ ℂ ) |
10 |
|
ffvelrn |
⊢ ( ( 𝐹 : ℂ ⟶ ℂ ∧ 𝑎 ∈ ℂ ) → ( 𝐹 ‘ 𝑎 ) ∈ ℂ ) |
11 |
2 9 10
|
syl2an |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑎 ∈ ℝ ) → ( 𝐹 ‘ 𝑎 ) ∈ ℂ ) |
12 |
|
plyrecj |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑎 ∈ ℂ ) → ( ∗ ‘ ( 𝐹 ‘ 𝑎 ) ) = ( 𝐹 ‘ ( ∗ ‘ 𝑎 ) ) ) |
13 |
9 12
|
sylan2 |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑎 ∈ ℝ ) → ( ∗ ‘ ( 𝐹 ‘ 𝑎 ) ) = ( 𝐹 ‘ ( ∗ ‘ 𝑎 ) ) ) |
14 |
|
cjre |
⊢ ( 𝑎 ∈ ℝ → ( ∗ ‘ 𝑎 ) = 𝑎 ) |
15 |
14
|
adantl |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑎 ∈ ℝ ) → ( ∗ ‘ 𝑎 ) = 𝑎 ) |
16 |
15
|
fveq2d |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑎 ∈ ℝ ) → ( 𝐹 ‘ ( ∗ ‘ 𝑎 ) ) = ( 𝐹 ‘ 𝑎 ) ) |
17 |
13 16
|
eqtrd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑎 ∈ ℝ ) → ( ∗ ‘ ( 𝐹 ‘ 𝑎 ) ) = ( 𝐹 ‘ 𝑎 ) ) |
18 |
11 17
|
cjrebd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑎 ∈ ℝ ) → ( 𝐹 ‘ 𝑎 ) ∈ ℝ ) |
19 |
8 18
|
eqeltrd |
⊢ ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑎 ∈ ℝ ) → ( ( 𝐹 ↾ ℝ ) ‘ 𝑎 ) ∈ ℝ ) |
20 |
19
|
ralrimiva |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ∀ 𝑎 ∈ ℝ ( ( 𝐹 ↾ ℝ ) ‘ 𝑎 ) ∈ ℝ ) |
21 |
|
fnfvrnss |
⊢ ( ( ( 𝐹 ↾ ℝ ) Fn ℝ ∧ ∀ 𝑎 ∈ ℝ ( ( 𝐹 ↾ ℝ ) ‘ 𝑎 ) ∈ ℝ ) → ran ( 𝐹 ↾ ℝ ) ⊆ ℝ ) |
22 |
6 20 21
|
syl2anc |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ran ( 𝐹 ↾ ℝ ) ⊆ ℝ ) |
23 |
|
df-f |
⊢ ( ( 𝐹 ↾ ℝ ) : ℝ ⟶ ℝ ↔ ( ( 𝐹 ↾ ℝ ) Fn ℝ ∧ ran ( 𝐹 ↾ ℝ ) ⊆ ℝ ) ) |
24 |
6 22 23
|
sylanbrc |
⊢ ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝐹 ↾ ℝ ) : ℝ ⟶ ℝ ) |