Metamath Proof Explorer


Theorem plyreres

Description: Real-coefficient polynomials restrict to real functions. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Assertion plyreres ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝐹 ↾ ℝ ) : ℝ ⟶ ℝ )

Proof

Step Hyp Ref Expression
1 plybss ( 𝐹 ∈ ( Poly ‘ ℝ ) → ℝ ⊆ ℂ )
2 plyf ( 𝐹 ∈ ( Poly ‘ ℝ ) → 𝐹 : ℂ ⟶ ℂ )
3 ffn ( 𝐹 : ℂ ⟶ ℂ → 𝐹 Fn ℂ )
4 fnssresb ( 𝐹 Fn ℂ → ( ( 𝐹 ↾ ℝ ) Fn ℝ ↔ ℝ ⊆ ℂ ) )
5 2 3 4 3syl ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( ( 𝐹 ↾ ℝ ) Fn ℝ ↔ ℝ ⊆ ℂ ) )
6 1 5 mpbird ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝐹 ↾ ℝ ) Fn ℝ )
7 fvres ( 𝑎 ∈ ℝ → ( ( 𝐹 ↾ ℝ ) ‘ 𝑎 ) = ( 𝐹𝑎 ) )
8 7 adantl ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑎 ∈ ℝ ) → ( ( 𝐹 ↾ ℝ ) ‘ 𝑎 ) = ( 𝐹𝑎 ) )
9 recn ( 𝑎 ∈ ℝ → 𝑎 ∈ ℂ )
10 ffvelrn ( ( 𝐹 : ℂ ⟶ ℂ ∧ 𝑎 ∈ ℂ ) → ( 𝐹𝑎 ) ∈ ℂ )
11 2 9 10 syl2an ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑎 ∈ ℝ ) → ( 𝐹𝑎 ) ∈ ℂ )
12 plyrecj ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑎 ∈ ℂ ) → ( ∗ ‘ ( 𝐹𝑎 ) ) = ( 𝐹 ‘ ( ∗ ‘ 𝑎 ) ) )
13 9 12 sylan2 ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑎 ∈ ℝ ) → ( ∗ ‘ ( 𝐹𝑎 ) ) = ( 𝐹 ‘ ( ∗ ‘ 𝑎 ) ) )
14 cjre ( 𝑎 ∈ ℝ → ( ∗ ‘ 𝑎 ) = 𝑎 )
15 14 adantl ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑎 ∈ ℝ ) → ( ∗ ‘ 𝑎 ) = 𝑎 )
16 15 fveq2d ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑎 ∈ ℝ ) → ( 𝐹 ‘ ( ∗ ‘ 𝑎 ) ) = ( 𝐹𝑎 ) )
17 13 16 eqtrd ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑎 ∈ ℝ ) → ( ∗ ‘ ( 𝐹𝑎 ) ) = ( 𝐹𝑎 ) )
18 11 17 cjrebd ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑎 ∈ ℝ ) → ( 𝐹𝑎 ) ∈ ℝ )
19 8 18 eqeltrd ( ( 𝐹 ∈ ( Poly ‘ ℝ ) ∧ 𝑎 ∈ ℝ ) → ( ( 𝐹 ↾ ℝ ) ‘ 𝑎 ) ∈ ℝ )
20 19 ralrimiva ( 𝐹 ∈ ( Poly ‘ ℝ ) → ∀ 𝑎 ∈ ℝ ( ( 𝐹 ↾ ℝ ) ‘ 𝑎 ) ∈ ℝ )
21 fnfvrnss ( ( ( 𝐹 ↾ ℝ ) Fn ℝ ∧ ∀ 𝑎 ∈ ℝ ( ( 𝐹 ↾ ℝ ) ‘ 𝑎 ) ∈ ℝ ) → ran ( 𝐹 ↾ ℝ ) ⊆ ℝ )
22 6 20 21 syl2anc ( 𝐹 ∈ ( Poly ‘ ℝ ) → ran ( 𝐹 ↾ ℝ ) ⊆ ℝ )
23 df-f ( ( 𝐹 ↾ ℝ ) : ℝ ⟶ ℝ ↔ ( ( 𝐹 ↾ ℝ ) Fn ℝ ∧ ran ( 𝐹 ↾ ℝ ) ⊆ ℝ ) )
24 6 22 23 sylanbrc ( 𝐹 ∈ ( Poly ‘ ℝ ) → ( 𝐹 ↾ ℝ ) : ℝ ⟶ ℝ )