Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → 𝑇 ⊆ ℂ ) |
2 |
|
cnex |
⊢ ℂ ∈ V |
3 |
|
ssexg |
⊢ ( ( 𝑇 ⊆ ℂ ∧ ℂ ∈ V ) → 𝑇 ∈ V ) |
4 |
1 2 3
|
sylancl |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → 𝑇 ∈ V ) |
5 |
|
snex |
⊢ { 0 } ∈ V |
6 |
|
unexg |
⊢ ( ( 𝑇 ∈ V ∧ { 0 } ∈ V ) → ( 𝑇 ∪ { 0 } ) ∈ V ) |
7 |
4 5 6
|
sylancl |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → ( 𝑇 ∪ { 0 } ) ∈ V ) |
8 |
|
unss1 |
⊢ ( 𝑆 ⊆ 𝑇 → ( 𝑆 ∪ { 0 } ) ⊆ ( 𝑇 ∪ { 0 } ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → ( 𝑆 ∪ { 0 } ) ⊆ ( 𝑇 ∪ { 0 } ) ) |
10 |
|
mapss |
⊢ ( ( ( 𝑇 ∪ { 0 } ) ∈ V ∧ ( 𝑆 ∪ { 0 } ) ⊆ ( 𝑇 ∪ { 0 } ) ) → ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ⊆ ( ( 𝑇 ∪ { 0 } ) ↑m ℕ0 ) ) |
11 |
7 9 10
|
syl2anc |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ⊆ ( ( 𝑇 ∪ { 0 } ) ↑m ℕ0 ) ) |
12 |
|
ssrexv |
⊢ ( ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ⊆ ( ( 𝑇 ∪ { 0 } ) ↑m ℕ0 ) → ( ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) → ∃ 𝑎 ∈ ( ( 𝑇 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
13 |
11 12
|
syl |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → ( ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) → ∃ 𝑎 ∈ ( ( 𝑇 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
14 |
13
|
reximdv |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → ( ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) → ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑇 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
15 |
14
|
ss2abdv |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → { 𝑓 ∣ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) } ⊆ { 𝑓 ∣ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑇 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) } ) |
16 |
|
sstr |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → 𝑆 ⊆ ℂ ) |
17 |
|
plyval |
⊢ ( 𝑆 ⊆ ℂ → ( Poly ‘ 𝑆 ) = { 𝑓 ∣ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) } ) |
18 |
16 17
|
syl |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → ( Poly ‘ 𝑆 ) = { 𝑓 ∣ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) } ) |
19 |
|
plyval |
⊢ ( 𝑇 ⊆ ℂ → ( Poly ‘ 𝑇 ) = { 𝑓 ∣ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑇 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) } ) |
20 |
19
|
adantl |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → ( Poly ‘ 𝑇 ) = { 𝑓 ∣ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑇 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) } ) |
21 |
15 18 20
|
3sstr4d |
⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ ) → ( Poly ‘ 𝑆 ) ⊆ ( Poly ‘ 𝑇 ) ) |