Metamath Proof Explorer


Theorem plysub

Description: The difference of two polynomials is a polynomial. (Contributed by Mario Carneiro, 21-Jul-2014)

Ref Expression
Hypotheses plyadd.1 ( 𝜑𝐹 ∈ ( Poly ‘ 𝑆 ) )
plyadd.2 ( 𝜑𝐺 ∈ ( Poly ‘ 𝑆 ) )
plyadd.3 ( ( 𝜑 ∧ ( 𝑥𝑆𝑦𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 )
plymul.4 ( ( 𝜑 ∧ ( 𝑥𝑆𝑦𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 )
plysub.5 ( 𝜑 → - 1 ∈ 𝑆 )
Assertion plysub ( 𝜑 → ( 𝐹f𝐺 ) ∈ ( Poly ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 plyadd.1 ( 𝜑𝐹 ∈ ( Poly ‘ 𝑆 ) )
2 plyadd.2 ( 𝜑𝐺 ∈ ( Poly ‘ 𝑆 ) )
3 plyadd.3 ( ( 𝜑 ∧ ( 𝑥𝑆𝑦𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 )
4 plymul.4 ( ( 𝜑 ∧ ( 𝑥𝑆𝑦𝑆 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝑆 )
5 plysub.5 ( 𝜑 → - 1 ∈ 𝑆 )
6 cnex ℂ ∈ V
7 plyf ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝐹 : ℂ ⟶ ℂ )
8 1 7 syl ( 𝜑𝐹 : ℂ ⟶ ℂ )
9 plyf ( 𝐺 ∈ ( Poly ‘ 𝑆 ) → 𝐺 : ℂ ⟶ ℂ )
10 2 9 syl ( 𝜑𝐺 : ℂ ⟶ ℂ )
11 ofnegsub ( ( ℂ ∈ V ∧ 𝐹 : ℂ ⟶ ℂ ∧ 𝐺 : ℂ ⟶ ℂ ) → ( 𝐹f + ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) = ( 𝐹f𝐺 ) )
12 6 8 10 11 mp3an2i ( 𝜑 → ( 𝐹f + ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) = ( 𝐹f𝐺 ) )
13 plybss ( 𝐹 ∈ ( Poly ‘ 𝑆 ) → 𝑆 ⊆ ℂ )
14 1 13 syl ( 𝜑𝑆 ⊆ ℂ )
15 plyconst ( ( 𝑆 ⊆ ℂ ∧ - 1 ∈ 𝑆 ) → ( ℂ × { - 1 } ) ∈ ( Poly ‘ 𝑆 ) )
16 14 5 15 syl2anc ( 𝜑 → ( ℂ × { - 1 } ) ∈ ( Poly ‘ 𝑆 ) )
17 16 2 3 4 plymul ( 𝜑 → ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ∈ ( Poly ‘ 𝑆 ) )
18 1 17 3 plyadd ( 𝜑 → ( 𝐹f + ( ( ℂ × { - 1 } ) ∘f · 𝐺 ) ) ∈ ( Poly ‘ 𝑆 ) )
19 12 18 eqeltrrd ( 𝜑 → ( 𝐹f𝐺 ) ∈ ( Poly ‘ 𝑆 ) )