| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyadd.1 | ⊢ ( 𝜑  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 2 |  | plyadd.2 | ⊢ ( 𝜑  →  𝐺  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 3 |  | plyadd.3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝑆 ) | 
						
							| 4 |  | plymul.4 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑆  ∧  𝑦  ∈  𝑆 ) )  →  ( 𝑥  ·  𝑦 )  ∈  𝑆 ) | 
						
							| 5 |  | plysub.5 | ⊢ ( 𝜑  →  - 1  ∈  𝑆 ) | 
						
							| 6 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 7 |  | plyf | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 8 | 1 7 | syl | ⊢ ( 𝜑  →  𝐹 : ℂ ⟶ ℂ ) | 
						
							| 9 |  | plyf | ⊢ ( 𝐺  ∈  ( Poly ‘ 𝑆 )  →  𝐺 : ℂ ⟶ ℂ ) | 
						
							| 10 | 2 9 | syl | ⊢ ( 𝜑  →  𝐺 : ℂ ⟶ ℂ ) | 
						
							| 11 |  | ofnegsub | ⊢ ( ( ℂ  ∈  V  ∧  𝐹 : ℂ ⟶ ℂ  ∧  𝐺 : ℂ ⟶ ℂ )  →  ( 𝐹  ∘f   +  ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) )  =  ( 𝐹  ∘f   −  𝐺 ) ) | 
						
							| 12 | 6 8 10 11 | mp3an2i | ⊢ ( 𝜑  →  ( 𝐹  ∘f   +  ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) )  =  ( 𝐹  ∘f   −  𝐺 ) ) | 
						
							| 13 |  | plybss | ⊢ ( 𝐹  ∈  ( Poly ‘ 𝑆 )  →  𝑆  ⊆  ℂ ) | 
						
							| 14 | 1 13 | syl | ⊢ ( 𝜑  →  𝑆  ⊆  ℂ ) | 
						
							| 15 |  | plyconst | ⊢ ( ( 𝑆  ⊆  ℂ  ∧  - 1  ∈  𝑆 )  →  ( ℂ  ×  { - 1 } )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 16 | 14 5 15 | syl2anc | ⊢ ( 𝜑  →  ( ℂ  ×  { - 1 } )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 17 | 16 2 3 4 | plymul | ⊢ ( 𝜑  →  ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 18 | 1 17 3 | plyadd | ⊢ ( 𝜑  →  ( 𝐹  ∘f   +  ( ( ℂ  ×  { - 1 } )  ∘f   ·  𝐺 ) )  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 19 | 12 18 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝐹  ∘f   −  𝐺 )  ∈  ( Poly ‘ 𝑆 ) ) |