| Step | Hyp | Ref | Expression | 
						
							| 1 |  | plyssc | ⊢ ( Poly ‘ 𝑆 )  ⊆  ( Poly ‘ ℂ ) | 
						
							| 2 |  | simpl | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  𝐹  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 3 | 1 2 | sselid | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  𝐹  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  𝐺  ∈  ( Poly ‘ 𝑆 ) ) | 
						
							| 5 | 1 4 | sselid | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  𝐺  ∈  ( Poly ‘ ℂ ) ) | 
						
							| 6 |  | addcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  +  𝑦 )  ∈  ℂ ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ ) )  →  ( 𝑥  +  𝑦 )  ∈  ℂ ) | 
						
							| 8 |  | mulcl | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ )  →  ( 𝑥  ·  𝑦 )  ∈  ℂ ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  ∧  ( 𝑥  ∈  ℂ  ∧  𝑦  ∈  ℂ ) )  →  ( 𝑥  ·  𝑦 )  ∈  ℂ ) | 
						
							| 10 |  | neg1cn | ⊢ - 1  ∈  ℂ | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  - 1  ∈  ℂ ) | 
						
							| 12 | 3 5 7 9 11 | plysub | ⊢ ( ( 𝐹  ∈  ( Poly ‘ 𝑆 )  ∧  𝐺  ∈  ( Poly ‘ 𝑆 ) )  →  ( 𝐹  ∘f   −  𝐺 )  ∈  ( Poly ‘ ℂ ) ) |