Step |
Hyp |
Ref |
Expression |
1 |
|
cnex |
⊢ ℂ ∈ V |
2 |
1
|
elpw2 |
⊢ ( 𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ ) |
3 |
|
uneq1 |
⊢ ( 𝑥 = 𝑆 → ( 𝑥 ∪ { 0 } ) = ( 𝑆 ∪ { 0 } ) ) |
4 |
3
|
oveq1d |
⊢ ( 𝑥 = 𝑆 → ( ( 𝑥 ∪ { 0 } ) ↑m ℕ0 ) = ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ) |
5 |
4
|
rexeqdv |
⊢ ( 𝑥 = 𝑆 → ( ∃ 𝑎 ∈ ( ( 𝑥 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ↔ ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑥 = 𝑆 → ( ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑥 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ↔ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) ) ) |
7 |
6
|
abbidv |
⊢ ( 𝑥 = 𝑆 → { 𝑓 ∣ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑥 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) } = { 𝑓 ∣ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) } ) |
8 |
|
df-ply |
⊢ Poly = ( 𝑥 ∈ 𝒫 ℂ ↦ { 𝑓 ∣ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑥 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) } ) |
9 |
|
nn0ex |
⊢ ℕ0 ∈ V |
10 |
|
ovex |
⊢ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) ∈ V |
11 |
9 10
|
ab2rexex |
⊢ { 𝑓 ∣ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) } ∈ V |
12 |
7 8 11
|
fvmpt |
⊢ ( 𝑆 ∈ 𝒫 ℂ → ( Poly ‘ 𝑆 ) = { 𝑓 ∣ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) } ) |
13 |
2 12
|
sylbir |
⊢ ( 𝑆 ⊆ ℂ → ( Poly ‘ 𝑆 ) = { 𝑓 ∣ ∃ 𝑛 ∈ ℕ0 ∃ 𝑎 ∈ ( ( 𝑆 ∪ { 0 } ) ↑m ℕ0 ) 𝑓 = ( 𝑧 ∈ ℂ ↦ Σ 𝑘 ∈ ( 0 ... 𝑛 ) ( ( 𝑎 ‘ 𝑘 ) · ( 𝑧 ↑ 𝑘 ) ) ) } ) |