Metamath Proof Explorer


Theorem pm1.4

Description: Axiom *1.4 of WhiteheadRussell p. 96. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm1.4 ( ( 𝜑𝜓 ) → ( 𝜓𝜑 ) )

Proof

Step Hyp Ref Expression
1 olc ( 𝜑 → ( 𝜓𝜑 ) )
2 orc ( 𝜓 → ( 𝜓𝜑 ) )
3 1 2 jaoi ( ( 𝜑𝜓 ) → ( 𝜓𝜑 ) )