Description: Axiom *1.5 (Assoc) of WhiteheadRussell p. 96. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm1.5 | ⊢ ( ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) → ( 𝜓 ∨ ( 𝜑 ∨ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc | ⊢ ( 𝜑 → ( 𝜑 ∨ 𝜒 ) ) | |
2 | 1 | olcd | ⊢ ( 𝜑 → ( 𝜓 ∨ ( 𝜑 ∨ 𝜒 ) ) ) |
3 | olc | ⊢ ( 𝜒 → ( 𝜑 ∨ 𝜒 ) ) | |
4 | 3 | orim2i | ⊢ ( ( 𝜓 ∨ 𝜒 ) → ( 𝜓 ∨ ( 𝜑 ∨ 𝜒 ) ) ) |
5 | 2 4 | jaoi | ⊢ ( ( 𝜑 ∨ ( 𝜓 ∨ 𝜒 ) ) → ( 𝜓 ∨ ( 𝜑 ∨ 𝜒 ) ) ) |