Metamath Proof Explorer


Theorem pm11.53

Description: Theorem *11.53 in WhiteheadRussell p. 164. See pm11.53v for a version requiring fewer axioms. (Contributed by Andrew Salmon, 24-May-2011)

Ref Expression
Assertion pm11.53 ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) )

Proof

Step Hyp Ref Expression
1 19.21v ( ∀ 𝑦 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∀ 𝑦 𝜓 ) )
2 1 albii ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜓 ) )
3 nfv 𝑥 𝜓
4 3 nfal 𝑥𝑦 𝜓
5 4 19.23 ( ∀ 𝑥 ( 𝜑 → ∀ 𝑦 𝜓 ) ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) )
6 2 5 bitri ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑦 𝜓 ) )