Description: Theorem *13.13 in WhiteheadRussell p. 178 with different variable substitution. (Contributed by Andrew Salmon, 3-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm13.13b | ⊢ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ 𝑥 = 𝐴 ) → 𝜑 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceq1a | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) | |
2 | 1 | biimparc | ⊢ ( ( [ 𝐴 / 𝑥 ] 𝜑 ∧ 𝑥 = 𝐴 ) → 𝜑 ) |