Description: Theorem *13.18 in WhiteheadRussell p. 178. (Contributed by Andrew Salmon, 3-Jun-2011) (Proof shortened by Wolf Lammen, 29-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | pm13.18 | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐴 ≠ 𝐶 ) → 𝐵 ≠ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶 ) ) | |
2 | 1 | biimpa | ⊢ ( ( 𝐴 = 𝐵 ∧ 𝐴 ≠ 𝐶 ) → 𝐵 ≠ 𝐶 ) |