Metamath Proof Explorer
Description: Theorem *13.181 in WhiteheadRussell p. 178. (Contributed by Andrew
Salmon, 3-Jun-2011) (Proof shortened by Wolf Lammen, 30-Oct-2024)
|
|
Ref |
Expression |
|
Assertion |
pm13.181 |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 ≠ 𝐶 ) → 𝐴 ≠ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
neeq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶 ) ) |
2 |
1
|
biimpar |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝐵 ≠ 𝐶 ) → 𝐴 ≠ 𝐶 ) |