| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 = 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| 2 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐴 ) ) |
| 3 |
2
|
bibi1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ↔ ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) ) |
| 4 |
3
|
albidv |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑧 ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ↔ ∀ 𝑧 ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) ) |
| 5 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ) |
| 6 |
5
|
alrimiv |
⊢ ( 𝑦 = 𝐵 → ∀ 𝑧 ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ) |
| 7 |
|
stdpc4 |
⊢ ( ∀ 𝑧 ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) → [ 𝑦 / 𝑧 ] ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ) |
| 8 |
|
sbbi |
⊢ ( [ 𝑦 / 𝑧 ] ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ↔ ( [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 ↔ [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ) ) |
| 9 |
|
equsb1v |
⊢ [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 |
| 10 |
9
|
tbt |
⊢ ( [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ↔ ( [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ↔ [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 ) ) |
| 11 |
|
bicom |
⊢ ( ( [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ↔ [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 ) ↔ ( [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 ↔ [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ) ) |
| 12 |
10 11
|
bitri |
⊢ ( [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ↔ ( [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 ↔ [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ) ) |
| 13 |
|
eqsb1 |
⊢ ( [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ↔ 𝑦 = 𝐵 ) |
| 14 |
8 12 13
|
3bitr2i |
⊢ ( [ 𝑦 / 𝑧 ] ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ↔ 𝑦 = 𝐵 ) |
| 15 |
7 14
|
sylib |
⊢ ( ∀ 𝑧 ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) → 𝑦 = 𝐵 ) |
| 16 |
6 15
|
impbii |
⊢ ( 𝑦 = 𝐵 ↔ ∀ 𝑧 ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ) |
| 17 |
1 4 16
|
vtoclbg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 = 𝐵 ↔ ∀ 𝑧 ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) ) |