Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 = 𝐵 ↔ 𝐴 = 𝐵 ) ) |
2 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐴 ) ) |
3 |
2
|
bibi1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ↔ ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) ) |
4 |
3
|
albidv |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑧 ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ↔ ∀ 𝑧 ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) ) |
5 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ) |
6 |
5
|
alrimiv |
⊢ ( 𝑦 = 𝐵 → ∀ 𝑧 ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ) |
7 |
|
stdpc4 |
⊢ ( ∀ 𝑧 ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) → [ 𝑦 / 𝑧 ] ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ) |
8 |
|
sbbi |
⊢ ( [ 𝑦 / 𝑧 ] ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ↔ ( [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 ↔ [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ) ) |
9 |
|
eqsb1 |
⊢ ( [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ↔ 𝑦 = 𝐵 ) |
10 |
9
|
bibi2i |
⊢ ( ( [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 ↔ [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ) ↔ ( [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 ↔ 𝑦 = 𝐵 ) ) |
11 |
|
equsb1v |
⊢ [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 |
12 |
|
biimp |
⊢ ( ( [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 ↔ 𝑦 = 𝐵 ) → ( [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 → 𝑦 = 𝐵 ) ) |
13 |
11 12
|
mpi |
⊢ ( ( [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 ↔ 𝑦 = 𝐵 ) → 𝑦 = 𝐵 ) |
14 |
10 13
|
sylbi |
⊢ ( ( [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 ↔ [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ) → 𝑦 = 𝐵 ) |
15 |
8 14
|
sylbi |
⊢ ( [ 𝑦 / 𝑧 ] ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) → 𝑦 = 𝐵 ) |
16 |
7 15
|
syl |
⊢ ( ∀ 𝑧 ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) → 𝑦 = 𝐵 ) |
17 |
6 16
|
impbii |
⊢ ( 𝑦 = 𝐵 ↔ ∀ 𝑧 ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ) |
18 |
1 4 17
|
vtoclbg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 = 𝐵 ↔ ∀ 𝑧 ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) ) |