Metamath Proof Explorer


Theorem pm13.183

Description: Compare theorem *13.183 in WhiteheadRussell p. 178. Only A is required to be a set. (Contributed by Andrew Salmon, 3-Jun-2011) Avoid ax-13 . (Revised by Wolf Lammen, 29-Apr-2023)

Ref Expression
Assertion pm13.183 ( 𝐴𝑉 → ( 𝐴 = 𝐵 ↔ ∀ 𝑧 ( 𝑧 = 𝐴𝑧 = 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 eqeq1 ( 𝑦 = 𝐴 → ( 𝑦 = 𝐵𝐴 = 𝐵 ) )
2 eqeq2 ( 𝑦 = 𝐴 → ( 𝑧 = 𝑦𝑧 = 𝐴 ) )
3 2 bibi1d ( 𝑦 = 𝐴 → ( ( 𝑧 = 𝑦𝑧 = 𝐵 ) ↔ ( 𝑧 = 𝐴𝑧 = 𝐵 ) ) )
4 3 albidv ( 𝑦 = 𝐴 → ( ∀ 𝑧 ( 𝑧 = 𝑦𝑧 = 𝐵 ) ↔ ∀ 𝑧 ( 𝑧 = 𝐴𝑧 = 𝐵 ) ) )
5 eqeq2 ( 𝑦 = 𝐵 → ( 𝑧 = 𝑦𝑧 = 𝐵 ) )
6 5 alrimiv ( 𝑦 = 𝐵 → ∀ 𝑧 ( 𝑧 = 𝑦𝑧 = 𝐵 ) )
7 stdpc4 ( ∀ 𝑧 ( 𝑧 = 𝑦𝑧 = 𝐵 ) → [ 𝑦 / 𝑧 ] ( 𝑧 = 𝑦𝑧 = 𝐵 ) )
8 sbbi ( [ 𝑦 / 𝑧 ] ( 𝑧 = 𝑦𝑧 = 𝐵 ) ↔ ( [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 ↔ [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ) )
9 eqsb1 ( [ 𝑦 / 𝑧 ] 𝑧 = 𝐵𝑦 = 𝐵 )
10 9 bibi2i ( ( [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 ↔ [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ) ↔ ( [ 𝑦 / 𝑧 ] 𝑧 = 𝑦𝑦 = 𝐵 ) )
11 equsb1v [ 𝑦 / 𝑧 ] 𝑧 = 𝑦
12 biimp ( ( [ 𝑦 / 𝑧 ] 𝑧 = 𝑦𝑦 = 𝐵 ) → ( [ 𝑦 / 𝑧 ] 𝑧 = 𝑦𝑦 = 𝐵 ) )
13 11 12 mpi ( ( [ 𝑦 / 𝑧 ] 𝑧 = 𝑦𝑦 = 𝐵 ) → 𝑦 = 𝐵 )
14 10 13 sylbi ( ( [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 ↔ [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ) → 𝑦 = 𝐵 )
15 8 14 sylbi ( [ 𝑦 / 𝑧 ] ( 𝑧 = 𝑦𝑧 = 𝐵 ) → 𝑦 = 𝐵 )
16 7 15 syl ( ∀ 𝑧 ( 𝑧 = 𝑦𝑧 = 𝐵 ) → 𝑦 = 𝐵 )
17 6 16 impbii ( 𝑦 = 𝐵 ↔ ∀ 𝑧 ( 𝑧 = 𝑦𝑧 = 𝐵 ) )
18 1 4 17 vtoclbg ( 𝐴𝑉 → ( 𝐴 = 𝐵 ↔ ∀ 𝑧 ( 𝑧 = 𝐴𝑧 = 𝐵 ) ) )