Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) |
2 |
1
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝜑 → 𝑥 = 𝑦 ) ↔ ( 𝜑 → 𝑥 = 𝐴 ) ) ) |
3 |
2
|
albidv |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ) ) |
4 |
|
dfsbcq |
⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
5 |
4
|
bibi1d |
⊢ ( 𝑦 = 𝐴 → ( ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 𝜑 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 𝜑 ) ) ) |
6 |
3 5
|
imbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 𝜑 ) ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 𝜑 ) ) ) ) |
7 |
|
sbc5 |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) |
8 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) |
9 |
|
simpr |
⊢ ( ( 𝑥 = 𝑦 ∧ 𝜑 ) → 𝜑 ) |
10 |
|
ancr |
⊢ ( ( 𝜑 → 𝑥 = 𝑦 ) → ( 𝜑 → ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) |
11 |
10
|
sps |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( 𝜑 → ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) |
12 |
9 11
|
impbid2 |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( ( 𝑥 = 𝑦 ∧ 𝜑 ) ↔ 𝜑 ) ) |
13 |
8 12
|
exbid |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ↔ ∃ 𝑥 𝜑 ) ) |
14 |
7 13
|
syl5bb |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 𝜑 ) ) |
15 |
6 14
|
vtoclg |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) → ( [ 𝐴 / 𝑥 ] 𝜑 ↔ ∃ 𝑥 𝜑 ) ) ) |
16 |
15
|
pm5.32d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ∧ [ 𝐴 / 𝑥 ] 𝜑 ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ∧ ∃ 𝑥 𝜑 ) ) ) |