Step |
Hyp |
Ref |
Expression |
1 |
|
2albiim |
⊢ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 ↔ ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ↔ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ∧ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) → 𝜑 ) ) ) |
2 |
|
2sbc6g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) → 𝜑 ) ↔ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) |
3 |
2
|
anbi2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ∧ ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) → 𝜑 ) ) ↔ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ∧ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) ) |
4 |
1 3
|
syl5bb |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 ↔ ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ↔ ( ∀ 𝑧 ∀ 𝑤 ( 𝜑 → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐵 ) ) ∧ [ 𝐴 / 𝑧 ] [ 𝐵 / 𝑤 ] 𝜑 ) ) ) |