Metamath Proof Explorer


Theorem pm2.18OLD

Description: Obsolete version of pm2.18 as of 17-Nov-2023. (Contributed by NM, 29-Dec-1992) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion pm2.18OLD ( ( ¬ 𝜑𝜑 ) → 𝜑 )

Proof

Step Hyp Ref Expression
1 pm2.21 ( ¬ 𝜑 → ( 𝜑 → ¬ ( ¬ 𝜑𝜑 ) ) )
2 1 a2i ( ( ¬ 𝜑𝜑 ) → ( ¬ 𝜑 → ¬ ( ¬ 𝜑𝜑 ) ) )
3 2 con4d ( ( ¬ 𝜑𝜑 ) → ( ( ¬ 𝜑𝜑 ) → 𝜑 ) )
4 3 pm2.43i ( ( ¬ 𝜑𝜑 ) → 𝜑 )