Description: Theorem *2.25 of WhiteheadRussell p. 104. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm2.25 | ⊢ ( 𝜑 ∨ ( ( 𝜑 ∨ 𝜓 ) → 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orel1 | ⊢ ( ¬ 𝜑 → ( ( 𝜑 ∨ 𝜓 ) → 𝜓 ) ) | |
2 | 1 | orri | ⊢ ( 𝜑 ∨ ( ( 𝜑 ∨ 𝜓 ) → 𝜓 ) ) |