Metamath Proof Explorer


Theorem pm2.31

Description: Theorem *2.31 of WhiteheadRussell p. 104. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.31 ( ( 𝜑 ∨ ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) ∨ 𝜒 ) )

Proof

Step Hyp Ref Expression
1 orass ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓𝜒 ) ) )
2 1 biimpri ( ( 𝜑 ∨ ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) ∨ 𝜒 ) )