Metamath Proof Explorer


Theorem pm2.32

Description: Theorem *2.32 of WhiteheadRussell p. 105. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.32 ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) → ( 𝜑 ∨ ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 orass ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) ↔ ( 𝜑 ∨ ( 𝜓𝜒 ) ) )
2 1 biimpi ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) → ( 𝜑 ∨ ( 𝜓𝜒 ) ) )