Metamath Proof Explorer


Theorem pm2.36

Description: Theorem *2.36 of WhiteheadRussell p. 105. (Contributed by NM, 6-Mar-2008)

Ref Expression
Assertion pm2.36 ( ( 𝜓𝜒 ) → ( ( 𝜑𝜓 ) → ( 𝜒𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 pm1.4 ( ( 𝜑𝜓 ) → ( 𝜓𝜑 ) )
2 pm2.38 ( ( 𝜓𝜒 ) → ( ( 𝜓𝜑 ) → ( 𝜒𝜑 ) ) )
3 1 2 syl5 ( ( 𝜓𝜒 ) → ( ( 𝜑𝜓 ) → ( 𝜒𝜑 ) ) )