Description: Theorem *2.37 of WhiteheadRussell p. 105. (Contributed by NM, 6-Mar-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | pm2.37 | ⊢ ( ( 𝜓 → 𝜒 ) → ( ( 𝜓 ∨ 𝜑 ) → ( 𝜑 ∨ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.38 | ⊢ ( ( 𝜓 → 𝜒 ) → ( ( 𝜓 ∨ 𝜑 ) → ( 𝜒 ∨ 𝜑 ) ) ) | |
2 | pm1.4 | ⊢ ( ( 𝜒 ∨ 𝜑 ) → ( 𝜑 ∨ 𝜒 ) ) | |
3 | 1 2 | syl6 | ⊢ ( ( 𝜓 → 𝜒 ) → ( ( 𝜓 ∨ 𝜑 ) → ( 𝜑 ∨ 𝜒 ) ) ) |