Metamath Proof Explorer


Theorem pm2.37

Description: Theorem *2.37 of WhiteheadRussell p. 105. (Contributed by NM, 6-Mar-2008)

Ref Expression
Assertion pm2.37 ( ( 𝜓𝜒 ) → ( ( 𝜓𝜑 ) → ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 pm2.38 ( ( 𝜓𝜒 ) → ( ( 𝜓𝜑 ) → ( 𝜒𝜑 ) ) )
2 pm1.4 ( ( 𝜒𝜑 ) → ( 𝜑𝜒 ) )
3 1 2 syl6 ( ( 𝜓𝜒 ) → ( ( 𝜓𝜑 ) → ( 𝜑𝜒 ) ) )