Description: Theorem *2.38 of WhiteheadRussell p. 105. (Contributed by NM, 6-Mar-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | pm2.38 | ⊢ ( ( 𝜓 → 𝜒 ) → ( ( 𝜓 ∨ 𝜑 ) → ( 𝜒 ∨ 𝜑 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | ⊢ ( ( 𝜓 → 𝜒 ) → ( 𝜓 → 𝜒 ) ) | |
2 | 1 | orim1d | ⊢ ( ( 𝜓 → 𝜒 ) → ( ( 𝜓 ∨ 𝜑 ) → ( 𝜒 ∨ 𝜑 ) ) ) |