Metamath Proof Explorer


Theorem pm2.43a

Description: Inference absorbing redundant antecedent. (Contributed by NM, 7-Nov-1995) (Proof shortened by Mel L. O'Cat, 28-Nov-2008)

Ref Expression
Hypothesis pm2.43a.1 ( 𝜓 → ( 𝜑 → ( 𝜓𝜒 ) ) )
Assertion pm2.43a ( 𝜓 → ( 𝜑𝜒 ) )

Proof

Step Hyp Ref Expression
1 pm2.43a.1 ( 𝜓 → ( 𝜑 → ( 𝜓𝜒 ) ) )
2 id ( 𝜓𝜓 )
3 2 1 mpid ( 𝜓 → ( 𝜑𝜒 ) )