Metamath Proof Explorer


Theorem pm2.49

Description: Theorem *2.49 of WhiteheadRussell p. 107. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.49 ( ¬ ( 𝜑𝜓 ) → ( ¬ 𝜑 ∨ ¬ 𝜓 ) )

Proof

Step Hyp Ref Expression
1 pm2.46 ( ¬ ( 𝜑𝜓 ) → ¬ 𝜓 )
2 1 olcd ( ¬ ( 𝜑𝜓 ) → ( ¬ 𝜑 ∨ ¬ 𝜓 ) )