Metamath Proof Explorer


Theorem pm2.53

Description: Theorem *2.53 of WhiteheadRussell p. 107. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.53 ( ( 𝜑𝜓 ) → ( ¬ 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 df-or ( ( 𝜑𝜓 ) ↔ ( ¬ 𝜑𝜓 ) )
2 1 biimpi ( ( 𝜑𝜓 ) → ( ¬ 𝜑𝜓 ) )