Step |
Hyp |
Ref |
Expression |
1 |
|
pm2.61da3ne.1 |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝜓 ) |
2 |
|
pm2.61da3ne.2 |
⊢ ( ( 𝜑 ∧ 𝐶 = 𝐷 ) → 𝜓 ) |
3 |
|
pm2.61da3ne.3 |
⊢ ( ( 𝜑 ∧ 𝐸 = 𝐹 ) → 𝜓 ) |
4 |
|
pm2.61da3ne.4 |
⊢ ( ( 𝜑 ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹 ) ) → 𝜓 ) |
5 |
1
|
a1d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( ( 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹 ) → 𝜓 ) ) |
6 |
4
|
3exp2 |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 → ( 𝐶 ≠ 𝐷 → ( 𝐸 ≠ 𝐹 → 𝜓 ) ) ) ) |
7 |
6
|
imp4b |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( ( 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹 ) → 𝜓 ) ) |
8 |
5 7
|
pm2.61dane |
⊢ ( 𝜑 → ( ( 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹 ) → 𝜓 ) ) |
9 |
8
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝐶 ≠ 𝐷 ∧ 𝐸 ≠ 𝐹 ) ) → 𝜓 ) |
10 |
2 3 9
|
pm2.61da2ne |
⊢ ( 𝜑 → 𝜓 ) |