Metamath Proof Explorer


Theorem pm2.61da3ne

Description: Deduction eliminating three inequalities in an antecedent. (Contributed by NM, 15-Jun-2013) (Proof shortened by Wolf Lammen, 25-Nov-2019)

Ref Expression
Hypotheses pm2.61da3ne.1 ( ( 𝜑𝐴 = 𝐵 ) → 𝜓 )
pm2.61da3ne.2 ( ( 𝜑𝐶 = 𝐷 ) → 𝜓 )
pm2.61da3ne.3 ( ( 𝜑𝐸 = 𝐹 ) → 𝜓 )
pm2.61da3ne.4 ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐷𝐸𝐹 ) ) → 𝜓 )
Assertion pm2.61da3ne ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 pm2.61da3ne.1 ( ( 𝜑𝐴 = 𝐵 ) → 𝜓 )
2 pm2.61da3ne.2 ( ( 𝜑𝐶 = 𝐷 ) → 𝜓 )
3 pm2.61da3ne.3 ( ( 𝜑𝐸 = 𝐹 ) → 𝜓 )
4 pm2.61da3ne.4 ( ( 𝜑 ∧ ( 𝐴𝐵𝐶𝐷𝐸𝐹 ) ) → 𝜓 )
5 1 a1d ( ( 𝜑𝐴 = 𝐵 ) → ( ( 𝐶𝐷𝐸𝐹 ) → 𝜓 ) )
6 4 3exp2 ( 𝜑 → ( 𝐴𝐵 → ( 𝐶𝐷 → ( 𝐸𝐹𝜓 ) ) ) )
7 6 imp4b ( ( 𝜑𝐴𝐵 ) → ( ( 𝐶𝐷𝐸𝐹 ) → 𝜓 ) )
8 5 7 pm2.61dane ( 𝜑 → ( ( 𝐶𝐷𝐸𝐹 ) → 𝜓 ) )
9 8 imp ( ( 𝜑 ∧ ( 𝐶𝐷𝐸𝐹 ) ) → 𝜓 )
10 2 3 9 pm2.61da2ne ( 𝜑𝜓 )