Metamath Proof Explorer


Theorem pm2.61danel

Description: Deduction eliminating an elementhood in an antecedent. (Contributed by AV, 5-Dec-2021)

Ref Expression
Hypotheses pm2.61danel.1 ( ( 𝜑𝐴𝐵 ) → 𝜓 )
pm2.61danel.2 ( ( 𝜑𝐴𝐵 ) → 𝜓 )
Assertion pm2.61danel ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 pm2.61danel.1 ( ( 𝜑𝐴𝐵 ) → 𝜓 )
2 pm2.61danel.2 ( ( 𝜑𝐴𝐵 ) → 𝜓 )
3 df-nel ( 𝐴𝐵 ↔ ¬ 𝐴𝐵 )
4 3 2 sylan2br ( ( 𝜑 ∧ ¬ 𝐴𝐵 ) → 𝜓 )
5 1 4 pm2.61dan ( 𝜑𝜓 )