Metamath Proof Explorer


Theorem pm2.61iine

Description: Equality version of pm2.61ii . (Contributed by Scott Fenton, 13-Jun-2013) (Proof shortened by Wolf Lammen, 25-Nov-2019)

Ref Expression
Hypotheses pm2.61iine.1 ( ( 𝐴𝐶𝐵𝐷 ) → 𝜑 )
pm2.61iine.2 ( 𝐴 = 𝐶𝜑 )
pm2.61iine.3 ( 𝐵 = 𝐷𝜑 )
Assertion pm2.61iine 𝜑

Proof

Step Hyp Ref Expression
1 pm2.61iine.1 ( ( 𝐴𝐶𝐵𝐷 ) → 𝜑 )
2 pm2.61iine.2 ( 𝐴 = 𝐶𝜑 )
3 pm2.61iine.3 ( 𝐵 = 𝐷𝜑 )
4 3 adantl ( ( 𝐴𝐶𝐵 = 𝐷 ) → 𝜑 )
5 4 1 pm2.61dane ( 𝐴𝐶𝜑 )
6 2 5 pm2.61ine 𝜑