Metamath Proof Explorer
Description: Equality version of pm2.61ii . (Contributed by Scott Fenton, 13-Jun-2013) (Proof shortened by Wolf Lammen, 25-Nov-2019)
|
|
Ref |
Expression |
|
Hypotheses |
pm2.61iine.1 |
⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) → 𝜑 ) |
|
|
pm2.61iine.2 |
⊢ ( 𝐴 = 𝐶 → 𝜑 ) |
|
|
pm2.61iine.3 |
⊢ ( 𝐵 = 𝐷 → 𝜑 ) |
|
Assertion |
pm2.61iine |
⊢ 𝜑 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
pm2.61iine.1 |
⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷 ) → 𝜑 ) |
2 |
|
pm2.61iine.2 |
⊢ ( 𝐴 = 𝐶 → 𝜑 ) |
3 |
|
pm2.61iine.3 |
⊢ ( 𝐵 = 𝐷 → 𝜑 ) |
4 |
3
|
adantl |
⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 = 𝐷 ) → 𝜑 ) |
5 |
4 1
|
pm2.61dane |
⊢ ( 𝐴 ≠ 𝐶 → 𝜑 ) |
6 |
2 5
|
pm2.61ine |
⊢ 𝜑 |