Metamath Proof Explorer


Theorem pm2.64

Description: Theorem *2.64 of WhiteheadRussell p. 107. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.64 ( ( 𝜑𝜓 ) → ( ( 𝜑 ∨ ¬ 𝜓 ) → 𝜑 ) )

Proof

Step Hyp Ref Expression
1 orel2 ( ¬ 𝜓 → ( ( 𝜑𝜓 ) → 𝜑 ) )
2 1 jao1i ( ( 𝜑 ∨ ¬ 𝜓 ) → ( ( 𝜑𝜓 ) → 𝜑 ) )
3 2 com12 ( ( 𝜑𝜓 ) → ( ( 𝜑 ∨ ¬ 𝜓 ) → 𝜑 ) )