Metamath Proof Explorer


Theorem pm2.65ni

Description: Inference rule for proof by contradiction. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses pm2.65ni.1 ( ¬ 𝜑𝜓 )
pm2.65ni.2 ( ¬ 𝜑 → ¬ 𝜓 )
Assertion pm2.65ni 𝜑

Proof

Step Hyp Ref Expression
1 pm2.65ni.1 ( ¬ 𝜑𝜓 )
2 pm2.65ni.2 ( ¬ 𝜑 → ¬ 𝜓 )
3 1 2 pm2.65i ¬ ¬ 𝜑
4 3 notnotri 𝜑