Description: Theorem *2.73 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm2.73 | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) → ( 𝜓 ∨ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.621 | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( 𝜑 ∨ 𝜓 ) → 𝜓 ) ) | |
2 | 1 | orim1d | ⊢ ( ( 𝜑 → 𝜓 ) → ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) → ( 𝜓 ∨ 𝜒 ) ) ) |