Metamath Proof Explorer


Theorem pm2.73

Description: Theorem *2.73 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.73 ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) → ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 pm2.621 ( ( 𝜑𝜓 ) → ( ( 𝜑𝜓 ) → 𝜓 ) )
2 1 orim1d ( ( 𝜑𝜓 ) → ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) → ( 𝜓𝜒 ) ) )