Metamath Proof Explorer


Theorem pm2.74

Description: Theorem *2.74 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005) (Proof shortened by Andrew Salmon, 7-May-2011)

Ref Expression
Assertion pm2.74 ( ( 𝜓𝜑 ) → ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) → ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 orel2 ( ¬ 𝜓 → ( ( 𝜑𝜓 ) → 𝜑 ) )
2 ax-1 ( 𝜑 → ( ( 𝜑𝜓 ) → 𝜑 ) )
3 1 2 ja ( ( 𝜓𝜑 ) → ( ( 𝜑𝜓 ) → 𝜑 ) )
4 3 orim1d ( ( 𝜓𝜑 ) → ( ( ( 𝜑𝜓 ) ∨ 𝜒 ) → ( 𝜑𝜒 ) ) )