Description: Theorem *2.74 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005) (Proof shortened by Andrew Salmon, 7-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm2.74 | ⊢ ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) → ( 𝜑 ∨ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orel2 | ⊢ ( ¬ 𝜓 → ( ( 𝜑 ∨ 𝜓 ) → 𝜑 ) ) | |
2 | ax-1 | ⊢ ( 𝜑 → ( ( 𝜑 ∨ 𝜓 ) → 𝜑 ) ) | |
3 | 1 2 | ja | ⊢ ( ( 𝜓 → 𝜑 ) → ( ( 𝜑 ∨ 𝜓 ) → 𝜑 ) ) |
4 | 3 | orim1d | ⊢ ( ( 𝜓 → 𝜑 ) → ( ( ( 𝜑 ∨ 𝜓 ) ∨ 𝜒 ) → ( 𝜑 ∨ 𝜒 ) ) ) |