Description: Theorem *2.75 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 4-Jan-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | pm2.75 | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ( 𝜑 ∨ ( 𝜓 → 𝜒 ) ) → ( 𝜑 ∨ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.76 | ⊢ ( ( 𝜑 ∨ ( 𝜓 → 𝜒 ) ) → ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∨ 𝜒 ) ) ) | |
2 | 1 | com12 | ⊢ ( ( 𝜑 ∨ 𝜓 ) → ( ( 𝜑 ∨ ( 𝜓 → 𝜒 ) ) → ( 𝜑 ∨ 𝜒 ) ) ) |