Metamath Proof Explorer


Theorem pm2.75

Description: Theorem *2.75 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 4-Jan-2013)

Ref Expression
Assertion pm2.75 ( ( 𝜑𝜓 ) → ( ( 𝜑 ∨ ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 pm2.76 ( ( 𝜑 ∨ ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )
2 1 com12 ( ( 𝜑𝜓 ) → ( ( 𝜑 ∨ ( 𝜓𝜒 ) ) → ( 𝜑𝜒 ) ) )