Metamath Proof Explorer


Theorem pm2.76

Description: Theorem *2.76 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.76 ( ( 𝜑 ∨ ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 orimdi ( ( 𝜑 ∨ ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )
2 1 biimpi ( ( 𝜑 ∨ ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )