Metamath Proof Explorer


Theorem pm2.81

Description: Theorem *2.81 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm2.81 ( ( 𝜓 → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜓 ) → ( ( 𝜑𝜒 ) → ( 𝜑𝜃 ) ) ) )

Proof

Step Hyp Ref Expression
1 orim2 ( ( 𝜓 → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜓 ) → ( 𝜑 ∨ ( 𝜒𝜃 ) ) ) )
2 pm2.76 ( ( 𝜑 ∨ ( 𝜒𝜃 ) ) → ( ( 𝜑𝜒 ) → ( 𝜑𝜃 ) ) )
3 1 2 syl6 ( ( 𝜓 → ( 𝜒𝜃 ) ) → ( ( 𝜑𝜓 ) → ( ( 𝜑𝜒 ) → ( 𝜑𝜃 ) ) ) )