Description: Theorem *2.81 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | pm2.81 | ⊢ ( ( 𝜓 → ( 𝜒 → 𝜃 ) ) → ( ( 𝜑 ∨ 𝜓 ) → ( ( 𝜑 ∨ 𝜒 ) → ( 𝜑 ∨ 𝜃 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim2 | ⊢ ( ( 𝜓 → ( 𝜒 → 𝜃 ) ) → ( ( 𝜑 ∨ 𝜓 ) → ( 𝜑 ∨ ( 𝜒 → 𝜃 ) ) ) ) | |
2 | pm2.76 | ⊢ ( ( 𝜑 ∨ ( 𝜒 → 𝜃 ) ) → ( ( 𝜑 ∨ 𝜒 ) → ( 𝜑 ∨ 𝜃 ) ) ) | |
3 | 1 2 | syl6 | ⊢ ( ( 𝜓 → ( 𝜒 → 𝜃 ) ) → ( ( 𝜑 ∨ 𝜓 ) → ( ( 𝜑 ∨ 𝜒 ) → ( 𝜑 ∨ 𝜃 ) ) ) ) |