Metamath Proof Explorer


Theorem pm2.85

Description: Theorem *2.85 of WhiteheadRussell p. 108. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 5-Jan-2013)

Ref Expression
Assertion pm2.85 ( ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) → ( 𝜑 ∨ ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 orimdi ( ( 𝜑 ∨ ( 𝜓𝜒 ) ) ↔ ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) )
2 1 biimpri ( ( ( 𝜑𝜓 ) → ( 𝜑𝜒 ) ) → ( 𝜑 ∨ ( 𝜓𝜒 ) ) )