Step |
Hyp |
Ref |
Expression |
1 |
|
monmat2matmon.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
monmat2matmon.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
monmat2matmon.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
monmat2matmon.m1 |
⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) |
5 |
|
monmat2matmon.e1 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
6 |
|
monmat2matmon.x |
⊢ 𝑋 = ( var1 ‘ 𝐴 ) |
7 |
|
monmat2matmon.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
8 |
|
monmat2matmon.k |
⊢ 𝐾 = ( Base ‘ 𝐴 ) |
9 |
|
monmat2matmon.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
10 |
|
monmat2matmon.i |
⊢ 𝐼 = ( 𝑁 pMatToMatPoly 𝑅 ) |
11 |
|
monmat2matmon.e2 |
⊢ 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
12 |
|
monmat2matmon.y |
⊢ 𝑌 = ( var1 ‘ 𝑅 ) |
13 |
|
monmat2matmon.m2 |
⊢ · = ( ·𝑠 ‘ 𝐶 ) |
14 |
|
monmat2matmon.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
15 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
16 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
17 |
16
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
18 |
1 2
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Ring ) |
19 |
|
ringcmn |
⊢ ( 𝐶 ∈ Ring → 𝐶 ∈ CMnd ) |
20 |
17 18 19
|
3syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐶 ∈ CMnd ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → 𝐶 ∈ CMnd ) |
22 |
7
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
23 |
16 22
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐴 ∈ Ring ) |
24 |
9
|
ply1ring |
⊢ ( 𝐴 ∈ Ring → 𝑄 ∈ Ring ) |
25 |
|
ringmnd |
⊢ ( 𝑄 ∈ Ring → 𝑄 ∈ Mnd ) |
26 |
23 24 25
|
3syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑄 ∈ Mnd ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → 𝑄 ∈ Mnd ) |
28 |
|
nn0ex |
⊢ ℕ0 ∈ V |
29 |
28
|
a1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → ℕ0 ∈ V ) |
30 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
31 |
1 2 3 4 5 6 7 9 30 10
|
pm2mpghm |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐼 ∈ ( 𝐶 GrpHom 𝑄 ) ) |
32 |
16 31
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐼 ∈ ( 𝐶 GrpHom 𝑄 ) ) |
33 |
32
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → 𝐼 ∈ ( 𝐶 GrpHom 𝑄 ) ) |
34 |
|
ghmmhm |
⊢ ( 𝐼 ∈ ( 𝐶 GrpHom 𝑄 ) → 𝐼 ∈ ( 𝐶 MndHom 𝑄 ) ) |
35 |
33 34
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → 𝐼 ∈ ( 𝐶 MndHom 𝑄 ) ) |
36 |
17
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
37 |
36
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
38 |
|
elmapi |
⊢ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) → 𝑀 : ℕ0 ⟶ 𝐾 ) |
39 |
38
|
adantr |
⊢ ( ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) → 𝑀 : ℕ0 ⟶ 𝐾 ) |
40 |
39
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → 𝑀 : ℕ0 ⟶ 𝐾 ) |
41 |
40
|
ffvelrnda |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑀 ‘ 𝑛 ) ∈ 𝐾 ) |
42 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
43 |
7 8 14 1 2 3 13 11 12
|
mat2pmatscmxcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( ( 𝑀 ‘ 𝑛 ) ∈ 𝐾 ∧ 𝑛 ∈ ℕ0 ) ) → ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ∈ 𝐵 ) |
44 |
37 41 42 43
|
syl12anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ∈ 𝐵 ) |
45 |
|
fvexd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → ( 0g ‘ 𝐶 ) ∈ V ) |
46 |
|
ovexd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ∈ V ) |
47 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) → 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) |
48 |
|
fvex |
⊢ ( 0g ‘ 𝐴 ) ∈ V |
49 |
|
fsuppmapnn0ub |
⊢ ( ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ ( 0g ‘ 𝐴 ) ∈ V ) → ( 𝑀 finSupp ( 0g ‘ 𝐴 ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) |
50 |
47 48 49
|
sylancl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) → ( 𝑀 finSupp ( 0g ‘ 𝐴 ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) |
51 |
|
csbov12g |
⊢ ( 𝑥 ∈ ℕ0 → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝑛 𝐸 𝑌 ) · ⦋ 𝑥 / 𝑛 ⦌ ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) |
52 |
|
csbov1g |
⊢ ( 𝑥 ∈ ℕ0 → ⦋ 𝑥 / 𝑛 ⦌ ( 𝑛 𝐸 𝑌 ) = ( ⦋ 𝑥 / 𝑛 ⦌ 𝑛 𝐸 𝑌 ) ) |
53 |
|
csbvarg |
⊢ ( 𝑥 ∈ ℕ0 → ⦋ 𝑥 / 𝑛 ⦌ 𝑛 = 𝑥 ) |
54 |
53
|
oveq1d |
⊢ ( 𝑥 ∈ ℕ0 → ( ⦋ 𝑥 / 𝑛 ⦌ 𝑛 𝐸 𝑌 ) = ( 𝑥 𝐸 𝑌 ) ) |
55 |
52 54
|
eqtrd |
⊢ ( 𝑥 ∈ ℕ0 → ⦋ 𝑥 / 𝑛 ⦌ ( 𝑛 𝐸 𝑌 ) = ( 𝑥 𝐸 𝑌 ) ) |
56 |
|
csbfv2g |
⊢ ( 𝑥 ∈ ℕ0 → ⦋ 𝑥 / 𝑛 ⦌ ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) = ( 𝑇 ‘ ⦋ 𝑥 / 𝑛 ⦌ ( 𝑀 ‘ 𝑛 ) ) ) |
57 |
|
csbfv2g |
⊢ ( 𝑥 ∈ ℕ0 → ⦋ 𝑥 / 𝑛 ⦌ ( 𝑀 ‘ 𝑛 ) = ( 𝑀 ‘ ⦋ 𝑥 / 𝑛 ⦌ 𝑛 ) ) |
58 |
53
|
fveq2d |
⊢ ( 𝑥 ∈ ℕ0 → ( 𝑀 ‘ ⦋ 𝑥 / 𝑛 ⦌ 𝑛 ) = ( 𝑀 ‘ 𝑥 ) ) |
59 |
57 58
|
eqtrd |
⊢ ( 𝑥 ∈ ℕ0 → ⦋ 𝑥 / 𝑛 ⦌ ( 𝑀 ‘ 𝑛 ) = ( 𝑀 ‘ 𝑥 ) ) |
60 |
59
|
fveq2d |
⊢ ( 𝑥 ∈ ℕ0 → ( 𝑇 ‘ ⦋ 𝑥 / 𝑛 ⦌ ( 𝑀 ‘ 𝑛 ) ) = ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) |
61 |
56 60
|
eqtrd |
⊢ ( 𝑥 ∈ ℕ0 → ⦋ 𝑥 / 𝑛 ⦌ ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) = ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) |
62 |
55 61
|
oveq12d |
⊢ ( 𝑥 ∈ ℕ0 → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝑛 𝐸 𝑌 ) · ⦋ 𝑥 / 𝑛 ⦌ ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( ( 𝑥 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ) |
63 |
51 62
|
eqtrd |
⊢ ( 𝑥 ∈ ℕ0 → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( ( 𝑥 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ) |
64 |
63
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( ( 𝑥 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ) |
65 |
64
|
adantr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( ( 𝑥 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ) |
66 |
|
fveq2 |
⊢ ( ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) → ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) = ( 𝑇 ‘ ( 0g ‘ 𝐴 ) ) ) |
67 |
66
|
oveq2d |
⊢ ( ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) → ( ( 𝑥 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) = ( ( 𝑥 𝐸 𝑌 ) · ( 𝑇 ‘ ( 0g ‘ 𝐴 ) ) ) ) |
68 |
14 7 8 1 2 3
|
mat2pmatghm |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ ( 𝐴 GrpHom 𝐶 ) ) |
69 |
16 68
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 ∈ ( 𝐴 GrpHom 𝐶 ) ) |
70 |
69
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → 𝑇 ∈ ( 𝐴 GrpHom 𝐶 ) ) |
71 |
|
ghmmhm |
⊢ ( 𝑇 ∈ ( 𝐴 GrpHom 𝐶 ) → 𝑇 ∈ ( 𝐴 MndHom 𝐶 ) ) |
72 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
73 |
72 15
|
mhm0 |
⊢ ( 𝑇 ∈ ( 𝐴 MndHom 𝐶 ) → ( 𝑇 ‘ ( 0g ‘ 𝐴 ) ) = ( 0g ‘ 𝐶 ) ) |
74 |
70 71 73
|
3syl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑇 ‘ ( 0g ‘ 𝐴 ) ) = ( 0g ‘ 𝐶 ) ) |
75 |
74
|
oveq2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑥 𝐸 𝑌 ) · ( 𝑇 ‘ ( 0g ‘ 𝐴 ) ) ) = ( ( 𝑥 𝐸 𝑌 ) · ( 0g ‘ 𝐶 ) ) ) |
76 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
77 |
16 76
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ Ring ) |
78 |
2
|
matlmod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → 𝐶 ∈ LMod ) |
79 |
77 78
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐶 ∈ LMod ) |
80 |
79
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → 𝐶 ∈ LMod ) |
81 |
77
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ Ring ) |
82 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
83 |
82
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
84 |
81 83
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
85 |
84
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
86 |
|
simpr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → 𝑥 ∈ ℕ0 ) |
87 |
16
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring ) |
88 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
89 |
12 1 88
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ ( Base ‘ 𝑃 ) ) |
90 |
87 89
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ ( Base ‘ 𝑃 ) ) |
91 |
90
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → 𝑌 ∈ ( Base ‘ 𝑃 ) ) |
92 |
82 88
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
93 |
92 11
|
mulgnn0cl |
⊢ ( ( ( mulGrp ‘ 𝑃 ) ∈ Mnd ∧ 𝑥 ∈ ℕ0 ∧ 𝑌 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑥 𝐸 𝑌 ) ∈ ( Base ‘ 𝑃 ) ) |
94 |
85 86 91 93
|
syl3anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑥 𝐸 𝑌 ) ∈ ( Base ‘ 𝑃 ) ) |
95 |
1
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
96 |
2
|
matsca2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → 𝑃 = ( Scalar ‘ 𝐶 ) ) |
97 |
95 96
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 = ( Scalar ‘ 𝐶 ) ) |
98 |
97
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( Scalar ‘ 𝐶 ) = 𝑃 ) |
99 |
98
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( Scalar ‘ 𝐶 ) = 𝑃 ) |
100 |
99
|
fveq2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ 𝑃 ) ) |
101 |
94 100
|
eleqtrrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑥 𝐸 𝑌 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
102 |
|
eqid |
⊢ ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 ) |
103 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) |
104 |
102 13 103 15
|
lmodvs0 |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑥 𝐸 𝑌 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) → ( ( 𝑥 𝐸 𝑌 ) · ( 0g ‘ 𝐶 ) ) = ( 0g ‘ 𝐶 ) ) |
105 |
80 101 104
|
syl2anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑥 𝐸 𝑌 ) · ( 0g ‘ 𝐶 ) ) = ( 0g ‘ 𝐶 ) ) |
106 |
75 105
|
eqtrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑥 𝐸 𝑌 ) · ( 𝑇 ‘ ( 0g ‘ 𝐴 ) ) ) = ( 0g ‘ 𝐶 ) ) |
107 |
67 106
|
sylan9eqr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) → ( ( 𝑥 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) = ( 0g ‘ 𝐶 ) ) |
108 |
65 107
|
eqtrd |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝐶 ) ) |
109 |
108
|
ex |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝐶 ) ) ) |
110 |
109
|
imim2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑦 < 𝑥 → ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) → ( 𝑦 < 𝑥 → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝐶 ) ) ) ) |
111 |
110
|
ralimdva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) → ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝐶 ) ) ) ) |
112 |
111
|
reximdva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) → ( ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝐶 ) ) ) ) |
113 |
50 112
|
syld |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) → ( 𝑀 finSupp ( 0g ‘ 𝐴 ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝐶 ) ) ) ) |
114 |
113
|
impr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝐶 ) ) ) |
115 |
45 46 114
|
mptnn0fsupp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) finSupp ( 0g ‘ 𝐶 ) ) |
116 |
3 15 21 27 29 35 44 115
|
gsummptmhm |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( 𝐼 ‘ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) ) ) = ( 𝐼 ‘ ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) ) ) ) |
117 |
|
simpll |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ) |
118 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
monmat2matmon |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 ‘ 𝑛 ) ∈ 𝐾 ∧ 𝑛 ∈ ℕ0 ) ) → ( 𝐼 ‘ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) = ( ( 𝑀 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) |
119 |
117 41 42 118
|
syl12anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐼 ‘ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) = ( ( 𝑀 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) |
120 |
119
|
mpteq2dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝐼 ‘ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑀 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) ) |
121 |
120
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( 𝐼 ‘ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑀 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) ) ) |
122 |
116 121
|
eqtr3d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → ( 𝐼 ‘ ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑀 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) ) ) |