| Step |
Hyp |
Ref |
Expression |
| 1 |
|
monmat2matmon.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
monmat2matmon.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
| 3 |
|
monmat2matmon.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 4 |
|
monmat2matmon.m1 |
⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) |
| 5 |
|
monmat2matmon.e1 |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
| 6 |
|
monmat2matmon.x |
⊢ 𝑋 = ( var1 ‘ 𝐴 ) |
| 7 |
|
monmat2matmon.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 8 |
|
monmat2matmon.k |
⊢ 𝐾 = ( Base ‘ 𝐴 ) |
| 9 |
|
monmat2matmon.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
| 10 |
|
monmat2matmon.i |
⊢ 𝐼 = ( 𝑁 pMatToMatPoly 𝑅 ) |
| 11 |
|
monmat2matmon.e2 |
⊢ 𝐸 = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 12 |
|
monmat2matmon.y |
⊢ 𝑌 = ( var1 ‘ 𝑅 ) |
| 13 |
|
monmat2matmon.m2 |
⊢ · = ( ·𝑠 ‘ 𝐶 ) |
| 14 |
|
monmat2matmon.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
| 15 |
|
eqid |
⊢ ( 0g ‘ 𝐶 ) = ( 0g ‘ 𝐶 ) |
| 16 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 17 |
16
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 18 |
1 2
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Ring ) |
| 19 |
|
ringcmn |
⊢ ( 𝐶 ∈ Ring → 𝐶 ∈ CMnd ) |
| 20 |
17 18 19
|
3syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐶 ∈ CMnd ) |
| 21 |
20
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → 𝐶 ∈ CMnd ) |
| 22 |
7
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 23 |
16 22
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐴 ∈ Ring ) |
| 24 |
9
|
ply1ring |
⊢ ( 𝐴 ∈ Ring → 𝑄 ∈ Ring ) |
| 25 |
|
ringmnd |
⊢ ( 𝑄 ∈ Ring → 𝑄 ∈ Mnd ) |
| 26 |
23 24 25
|
3syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑄 ∈ Mnd ) |
| 27 |
26
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → 𝑄 ∈ Mnd ) |
| 28 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 29 |
28
|
a1i |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → ℕ0 ∈ V ) |
| 30 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
| 31 |
1 2 3 4 5 6 7 9 30 10
|
pm2mpghm |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐼 ∈ ( 𝐶 GrpHom 𝑄 ) ) |
| 32 |
16 31
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐼 ∈ ( 𝐶 GrpHom 𝑄 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → 𝐼 ∈ ( 𝐶 GrpHom 𝑄 ) ) |
| 34 |
|
ghmmhm |
⊢ ( 𝐼 ∈ ( 𝐶 GrpHom 𝑄 ) → 𝐼 ∈ ( 𝐶 MndHom 𝑄 ) ) |
| 35 |
33 34
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → 𝐼 ∈ ( 𝐶 MndHom 𝑄 ) ) |
| 36 |
17
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 37 |
36
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 38 |
|
elmapi |
⊢ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) → 𝑀 : ℕ0 ⟶ 𝐾 ) |
| 39 |
38
|
adantr |
⊢ ( ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) → 𝑀 : ℕ0 ⟶ 𝐾 ) |
| 40 |
39
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → 𝑀 : ℕ0 ⟶ 𝐾 ) |
| 41 |
40
|
ffvelcdmda |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑀 ‘ 𝑛 ) ∈ 𝐾 ) |
| 42 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) |
| 43 |
7 8 14 1 2 3 13 11 12
|
mat2pmatscmxcl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( ( 𝑀 ‘ 𝑛 ) ∈ 𝐾 ∧ 𝑛 ∈ ℕ0 ) ) → ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ∈ 𝐵 ) |
| 44 |
37 41 42 43
|
syl12anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ∈ 𝐵 ) |
| 45 |
|
fvexd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → ( 0g ‘ 𝐶 ) ∈ V ) |
| 46 |
|
ovexd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ∈ V ) |
| 47 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) → 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) |
| 48 |
|
fvex |
⊢ ( 0g ‘ 𝐴 ) ∈ V |
| 49 |
|
fsuppmapnn0ub |
⊢ ( ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ ( 0g ‘ 𝐴 ) ∈ V ) → ( 𝑀 finSupp ( 0g ‘ 𝐴 ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) |
| 50 |
47 48 49
|
sylancl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) → ( 𝑀 finSupp ( 0g ‘ 𝐴 ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) ) ) |
| 51 |
|
csbov12g |
⊢ ( 𝑥 ∈ ℕ0 → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝑛 𝐸 𝑌 ) · ⦋ 𝑥 / 𝑛 ⦌ ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) |
| 52 |
|
csbov1g |
⊢ ( 𝑥 ∈ ℕ0 → ⦋ 𝑥 / 𝑛 ⦌ ( 𝑛 𝐸 𝑌 ) = ( ⦋ 𝑥 / 𝑛 ⦌ 𝑛 𝐸 𝑌 ) ) |
| 53 |
|
csbvarg |
⊢ ( 𝑥 ∈ ℕ0 → ⦋ 𝑥 / 𝑛 ⦌ 𝑛 = 𝑥 ) |
| 54 |
53
|
oveq1d |
⊢ ( 𝑥 ∈ ℕ0 → ( ⦋ 𝑥 / 𝑛 ⦌ 𝑛 𝐸 𝑌 ) = ( 𝑥 𝐸 𝑌 ) ) |
| 55 |
52 54
|
eqtrd |
⊢ ( 𝑥 ∈ ℕ0 → ⦋ 𝑥 / 𝑛 ⦌ ( 𝑛 𝐸 𝑌 ) = ( 𝑥 𝐸 𝑌 ) ) |
| 56 |
|
csbfv2g |
⊢ ( 𝑥 ∈ ℕ0 → ⦋ 𝑥 / 𝑛 ⦌ ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) = ( 𝑇 ‘ ⦋ 𝑥 / 𝑛 ⦌ ( 𝑀 ‘ 𝑛 ) ) ) |
| 57 |
|
csbfv2g |
⊢ ( 𝑥 ∈ ℕ0 → ⦋ 𝑥 / 𝑛 ⦌ ( 𝑀 ‘ 𝑛 ) = ( 𝑀 ‘ ⦋ 𝑥 / 𝑛 ⦌ 𝑛 ) ) |
| 58 |
53
|
fveq2d |
⊢ ( 𝑥 ∈ ℕ0 → ( 𝑀 ‘ ⦋ 𝑥 / 𝑛 ⦌ 𝑛 ) = ( 𝑀 ‘ 𝑥 ) ) |
| 59 |
57 58
|
eqtrd |
⊢ ( 𝑥 ∈ ℕ0 → ⦋ 𝑥 / 𝑛 ⦌ ( 𝑀 ‘ 𝑛 ) = ( 𝑀 ‘ 𝑥 ) ) |
| 60 |
59
|
fveq2d |
⊢ ( 𝑥 ∈ ℕ0 → ( 𝑇 ‘ ⦋ 𝑥 / 𝑛 ⦌ ( 𝑀 ‘ 𝑛 ) ) = ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) |
| 61 |
56 60
|
eqtrd |
⊢ ( 𝑥 ∈ ℕ0 → ⦋ 𝑥 / 𝑛 ⦌ ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) = ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) |
| 62 |
55 61
|
oveq12d |
⊢ ( 𝑥 ∈ ℕ0 → ( ⦋ 𝑥 / 𝑛 ⦌ ( 𝑛 𝐸 𝑌 ) · ⦋ 𝑥 / 𝑛 ⦌ ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( ( 𝑥 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ) |
| 63 |
51 62
|
eqtrd |
⊢ ( 𝑥 ∈ ℕ0 → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( ( 𝑥 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ) |
| 64 |
63
|
adantl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( ( 𝑥 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ) |
| 65 |
64
|
adantr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( ( 𝑥 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) ) |
| 66 |
|
fveq2 |
⊢ ( ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) → ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) = ( 𝑇 ‘ ( 0g ‘ 𝐴 ) ) ) |
| 67 |
66
|
oveq2d |
⊢ ( ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) → ( ( 𝑥 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) = ( ( 𝑥 𝐸 𝑌 ) · ( 𝑇 ‘ ( 0g ‘ 𝐴 ) ) ) ) |
| 68 |
14 7 8 1 2 3
|
mat2pmatghm |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 ∈ ( 𝐴 GrpHom 𝐶 ) ) |
| 69 |
16 68
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 ∈ ( 𝐴 GrpHom 𝐶 ) ) |
| 70 |
69
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → 𝑇 ∈ ( 𝐴 GrpHom 𝐶 ) ) |
| 71 |
|
ghmmhm |
⊢ ( 𝑇 ∈ ( 𝐴 GrpHom 𝐶 ) → 𝑇 ∈ ( 𝐴 MndHom 𝐶 ) ) |
| 72 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
| 73 |
72 15
|
mhm0 |
⊢ ( 𝑇 ∈ ( 𝐴 MndHom 𝐶 ) → ( 𝑇 ‘ ( 0g ‘ 𝐴 ) ) = ( 0g ‘ 𝐶 ) ) |
| 74 |
70 71 73
|
3syl |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑇 ‘ ( 0g ‘ 𝐴 ) ) = ( 0g ‘ 𝐶 ) ) |
| 75 |
74
|
oveq2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑥 𝐸 𝑌 ) · ( 𝑇 ‘ ( 0g ‘ 𝐴 ) ) ) = ( ( 𝑥 𝐸 𝑌 ) · ( 0g ‘ 𝐶 ) ) ) |
| 76 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 77 |
16 76
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ Ring ) |
| 78 |
2
|
matlmod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → 𝐶 ∈ LMod ) |
| 79 |
77 78
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐶 ∈ LMod ) |
| 80 |
79
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → 𝐶 ∈ LMod ) |
| 81 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 82 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 83 |
81 82
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
| 84 |
77
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ Ring ) |
| 85 |
81
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 86 |
84 85
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 87 |
86
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 88 |
|
simpr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → 𝑥 ∈ ℕ0 ) |
| 89 |
16
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring ) |
| 90 |
12 1 82
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑌 ∈ ( Base ‘ 𝑃 ) ) |
| 91 |
89 90
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ ( Base ‘ 𝑃 ) ) |
| 92 |
91
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → 𝑌 ∈ ( Base ‘ 𝑃 ) ) |
| 93 |
83 11 87 88 92
|
mulgnn0cld |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑥 𝐸 𝑌 ) ∈ ( Base ‘ 𝑃 ) ) |
| 94 |
1
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
| 95 |
2
|
matsca2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → 𝑃 = ( Scalar ‘ 𝐶 ) ) |
| 96 |
94 95
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 = ( Scalar ‘ 𝐶 ) ) |
| 97 |
96
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( Scalar ‘ 𝐶 ) = 𝑃 ) |
| 98 |
97
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( Scalar ‘ 𝐶 ) = 𝑃 ) |
| 99 |
98
|
fveq2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ 𝑃 ) ) |
| 100 |
93 99
|
eleqtrrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( 𝑥 𝐸 𝑌 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) |
| 101 |
|
eqid |
⊢ ( Scalar ‘ 𝐶 ) = ( Scalar ‘ 𝐶 ) |
| 102 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐶 ) ) = ( Base ‘ ( Scalar ‘ 𝐶 ) ) |
| 103 |
101 13 102 15
|
lmodvs0 |
⊢ ( ( 𝐶 ∈ LMod ∧ ( 𝑥 𝐸 𝑌 ) ∈ ( Base ‘ ( Scalar ‘ 𝐶 ) ) ) → ( ( 𝑥 𝐸 𝑌 ) · ( 0g ‘ 𝐶 ) ) = ( 0g ‘ 𝐶 ) ) |
| 104 |
80 100 103
|
syl2anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑥 𝐸 𝑌 ) · ( 0g ‘ 𝐶 ) ) = ( 0g ‘ 𝐶 ) ) |
| 105 |
75 104
|
eqtrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑥 𝐸 𝑌 ) · ( 𝑇 ‘ ( 0g ‘ 𝐴 ) ) ) = ( 0g ‘ 𝐶 ) ) |
| 106 |
67 105
|
sylan9eqr |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) → ( ( 𝑥 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑥 ) ) ) = ( 0g ‘ 𝐶 ) ) |
| 107 |
65 106
|
eqtrd |
⊢ ( ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) ∧ ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝐶 ) ) |
| 108 |
107
|
ex |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝐶 ) ) ) |
| 109 |
108
|
imim2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑦 < 𝑥 → ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) → ( 𝑦 < 𝑥 → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝐶 ) ) ) ) |
| 110 |
109
|
ralimdva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) → ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝐶 ) ) ) ) |
| 111 |
110
|
reximdva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) → ( ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ( 𝑀 ‘ 𝑥 ) = ( 0g ‘ 𝐴 ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝐶 ) ) ) ) |
| 112 |
50 111
|
syld |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ) → ( 𝑀 finSupp ( 0g ‘ 𝐴 ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝐶 ) ) ) ) |
| 113 |
112
|
impr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → ∃ 𝑦 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑦 < 𝑥 → ⦋ 𝑥 / 𝑛 ⦌ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) = ( 0g ‘ 𝐶 ) ) ) |
| 114 |
45 46 113
|
mptnn0fsupp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) finSupp ( 0g ‘ 𝐶 ) ) |
| 115 |
3 15 21 27 29 35 44 114
|
gsummptmhm |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( 𝐼 ‘ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) ) ) = ( 𝐼 ‘ ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) ) ) ) |
| 116 |
|
simpll |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ) |
| 117 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
monmat2matmon |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑀 ‘ 𝑛 ) ∈ 𝐾 ∧ 𝑛 ∈ ℕ0 ) ) → ( 𝐼 ‘ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) = ( ( 𝑀 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) |
| 118 |
116 41 42 117
|
syl12anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐼 ‘ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) = ( ( 𝑀 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) |
| 119 |
118
|
mpteq2dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → ( 𝑛 ∈ ℕ0 ↦ ( 𝐼 ‘ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑀 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) ) |
| 120 |
119
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( 𝐼 ‘ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑀 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) ) ) |
| 121 |
115 120
|
eqtr3d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( 𝑀 ∈ ( 𝐾 ↑m ℕ0 ) ∧ 𝑀 finSupp ( 0g ‘ 𝐴 ) ) ) → ( 𝐼 ‘ ( 𝐶 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 𝐸 𝑌 ) · ( 𝑇 ‘ ( 𝑀 ‘ 𝑛 ) ) ) ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑀 ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) ) ) |