Step |
Hyp |
Ref |
Expression |
1 |
|
pm2mpval.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
pm2mpval.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
3 |
|
pm2mpval.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
4 |
|
pm2mpval.m |
⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) |
5 |
|
pm2mpval.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
6 |
|
pm2mpval.x |
⊢ 𝑋 = ( var1 ‘ 𝐴 ) |
7 |
|
pm2mpval.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
8 |
|
pm2mpval.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
9 |
|
pm2mpval.t |
⊢ 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 ) |
10 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → 𝑁 ∈ Fin ) |
11 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → 𝑅 ∈ Ring ) |
12 |
|
simprl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → 𝑀 ∈ 𝐵 ) |
13 |
1 2 3 4 5 6 7 8 9
|
pm2mpfval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
14 |
10 11 12 13
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → ( 𝑇 ‘ 𝑀 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
15 |
14
|
fveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → ( coe1 ‘ ( 𝑇 ‘ 𝑀 ) ) = ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
16 |
15
|
fveq1d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → ( ( coe1 ‘ ( 𝑇 ‘ 𝑀 ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐾 ) ) |
17 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
18 |
7
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → 𝐴 ∈ Ring ) |
20 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
21 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
22 |
11
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
23 |
12
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑀 ∈ 𝐵 ) |
24 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
25 |
1 2 3 7 20
|
decpmatcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
26 |
22 23 24 25
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
27 |
26
|
ralrimiva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → ∀ 𝑘 ∈ ℕ0 ( 𝑀 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) ) |
28 |
1 2 3 7 21
|
decpmatfsupp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑀 decompPMat 𝑘 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
29 |
28
|
ad2ant2lr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑀 decompPMat 𝑘 ) ) finSupp ( 0g ‘ 𝐴 ) ) |
30 |
|
simpr |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 ) |
31 |
30
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → 𝐾 ∈ ℕ0 ) |
32 |
8 17 6 5 19 20 4 21 27 29 31
|
gsummoncoe1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐾 ) = ⦋ 𝐾 / 𝑘 ⦌ ( 𝑀 decompPMat 𝑘 ) ) |
33 |
|
csbov2g |
⊢ ( 𝐾 ∈ ℕ0 → ⦋ 𝐾 / 𝑘 ⦌ ( 𝑀 decompPMat 𝑘 ) = ( 𝑀 decompPMat ⦋ 𝐾 / 𝑘 ⦌ 𝑘 ) ) |
34 |
|
csbvarg |
⊢ ( 𝐾 ∈ ℕ0 → ⦋ 𝐾 / 𝑘 ⦌ 𝑘 = 𝐾 ) |
35 |
34
|
oveq2d |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝑀 decompPMat ⦋ 𝐾 / 𝑘 ⦌ 𝑘 ) = ( 𝑀 decompPMat 𝐾 ) ) |
36 |
33 35
|
eqtrd |
⊢ ( 𝐾 ∈ ℕ0 → ⦋ 𝐾 / 𝑘 ⦌ ( 𝑀 decompPMat 𝑘 ) = ( 𝑀 decompPMat 𝐾 ) ) |
37 |
36
|
adantl |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) → ⦋ 𝐾 / 𝑘 ⦌ ( 𝑀 decompPMat 𝑘 ) = ( 𝑀 decompPMat 𝐾 ) ) |
38 |
37
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → ⦋ 𝐾 / 𝑘 ⦌ ( 𝑀 decompPMat 𝑘 ) = ( 𝑀 decompPMat 𝐾 ) ) |
39 |
16 32 38
|
3eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀 ∈ 𝐵 ∧ 𝐾 ∈ ℕ0 ) ) → ( ( coe1 ‘ ( 𝑇 ‘ 𝑀 ) ) ‘ 𝐾 ) = ( 𝑀 decompPMat 𝐾 ) ) |