| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pm2mpval.p | 
							⊢ 𝑃  =  ( Poly1 ‘ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							pm2mpval.c | 
							⊢ 𝐶  =  ( 𝑁  Mat  𝑃 )  | 
						
						
							| 3 | 
							
								
							 | 
							pm2mpval.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐶 )  | 
						
						
							| 4 | 
							
								
							 | 
							pm2mpval.m | 
							⊢  ∗   =  (  ·𝑠  ‘ 𝑄 )  | 
						
						
							| 5 | 
							
								
							 | 
							pm2mpval.e | 
							⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑄 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							pm2mpval.x | 
							⊢ 𝑋  =  ( var1 ‘ 𝐴 )  | 
						
						
							| 7 | 
							
								
							 | 
							pm2mpval.a | 
							⊢ 𝐴  =  ( 𝑁  Mat  𝑅 )  | 
						
						
							| 8 | 
							
								
							 | 
							pm2mpval.q | 
							⊢ 𝑄  =  ( Poly1 ‘ 𝐴 )  | 
						
						
							| 9 | 
							
								
							 | 
							pm2mpval.t | 
							⊢ 𝑇  =  ( 𝑁  pMatToMatPoly  𝑅 )  | 
						
						
							| 10 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  𝑁  ∈  Fin )  | 
						
						
							| 11 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  𝑅  ∈  Ring )  | 
						
						
							| 12 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  𝑀  ∈  𝐵 )  | 
						
						
							| 13 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							pm2mpfval | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑀  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) )  | 
						
						
							| 14 | 
							
								10 11 12 13
							 | 
							syl3anc | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  ( 𝑇 ‘ 𝑀 )  =  ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑀  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							fveq2d | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  ( coe1 ‘ ( 𝑇 ‘ 𝑀 ) )  =  ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑀  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							fveq1d | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  ( ( coe1 ‘ ( 𝑇 ‘ 𝑀 ) ) ‘ 𝐾 )  =  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑀  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ‘ 𝐾 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 )  | 
						
						
							| 18 | 
							
								7
							 | 
							matring | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝐴  ∈  Ring )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  𝐴  ∈  Ring )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐴 )  =  ( Base ‘ 𝐴 )  | 
						
						
							| 21 | 
							
								
							 | 
							eqid | 
							⊢ ( 0g ‘ 𝐴 )  =  ( 0g ‘ 𝐴 )  | 
						
						
							| 22 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑅  ∈  Ring )  | 
						
						
							| 23 | 
							
								12
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑀  ∈  𝐵 )  | 
						
						
							| 24 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  𝑘  ∈  ℕ0 )  | 
						
						
							| 25 | 
							
								1 2 3 7 20
							 | 
							decpmatcl | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 26 | 
							
								22 23 24 25
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑀  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							ralrimiva | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  ∀ 𝑘  ∈  ℕ0 ( 𝑀  decompPMat  𝑘 )  ∈  ( Base ‘ 𝐴 ) )  | 
						
						
							| 28 | 
							
								1 2 3 7 21
							 | 
							decpmatfsupp | 
							⊢ ( ( 𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝑀  decompPMat  𝑘 ) )  finSupp  ( 0g ‘ 𝐴 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							ad2ant2lr | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  ( 𝑘  ∈  ℕ0  ↦  ( 𝑀  decompPMat  𝑘 ) )  finSupp  ( 0g ‘ 𝐴 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 )  →  𝐾  ∈  ℕ0 )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  𝐾  ∈  ℕ0 )  | 
						
						
							| 32 | 
							
								8 17 6 5 19 20 4 21 27 29 31
							 | 
							gsummoncoe1 | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  ( ( coe1 ‘ ( 𝑄  Σg  ( 𝑘  ∈  ℕ0  ↦  ( ( 𝑀  decompPMat  𝑘 )  ∗  ( 𝑘  ↑  𝑋 ) ) ) ) ) ‘ 𝐾 )  =  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑀  decompPMat  𝑘 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							csbov2g | 
							⊢ ( 𝐾  ∈  ℕ0  →  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑀  decompPMat  𝑘 )  =  ( 𝑀  decompPMat  ⦋ 𝐾  /  𝑘 ⦌ 𝑘 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							csbvarg | 
							⊢ ( 𝐾  ∈  ℕ0  →  ⦋ 𝐾  /  𝑘 ⦌ 𝑘  =  𝐾 )  | 
						
						
							| 35 | 
							
								34
							 | 
							oveq2d | 
							⊢ ( 𝐾  ∈  ℕ0  →  ( 𝑀  decompPMat  ⦋ 𝐾  /  𝑘 ⦌ 𝑘 )  =  ( 𝑀  decompPMat  𝐾 ) )  | 
						
						
							| 36 | 
							
								33 35
							 | 
							eqtrd | 
							⊢ ( 𝐾  ∈  ℕ0  →  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑀  decompPMat  𝑘 )  =  ( 𝑀  decompPMat  𝐾 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							adantl | 
							⊢ ( ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 )  →  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑀  decompPMat  𝑘 )  =  ( 𝑀  decompPMat  𝐾 ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							adantl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  ⦋ 𝐾  /  𝑘 ⦌ ( 𝑀  decompPMat  𝑘 )  =  ( 𝑀  decompPMat  𝐾 ) )  | 
						
						
							| 39 | 
							
								16 32 38
							 | 
							3eqtrd | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( 𝑀  ∈  𝐵  ∧  𝐾  ∈  ℕ0 ) )  →  ( ( coe1 ‘ ( 𝑇 ‘ 𝑀 ) ) ‘ 𝐾 )  =  ( 𝑀  decompPMat  𝐾 ) )  |