Metamath Proof Explorer


Theorem pm2mpcoe1

Description: A coefficient of the polynomial over matrices which is the result of the transformation of a polynomial matrix is the matrix consisting of the coefficients in the polynomial entries of the polynomial matrix. (Contributed by AV, 20-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses pm2mpval.p 𝑃 = ( Poly1𝑅 )
pm2mpval.c 𝐶 = ( 𝑁 Mat 𝑃 )
pm2mpval.b 𝐵 = ( Base ‘ 𝐶 )
pm2mpval.m = ( ·𝑠𝑄 )
pm2mpval.e = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
pm2mpval.x 𝑋 = ( var1𝐴 )
pm2mpval.a 𝐴 = ( 𝑁 Mat 𝑅 )
pm2mpval.q 𝑄 = ( Poly1𝐴 )
pm2mpval.t 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 )
Assertion pm2mpcoe1 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀𝐵𝐾 ∈ ℕ0 ) ) → ( ( coe1 ‘ ( 𝑇𝑀 ) ) ‘ 𝐾 ) = ( 𝑀 decompPMat 𝐾 ) )

Proof

Step Hyp Ref Expression
1 pm2mpval.p 𝑃 = ( Poly1𝑅 )
2 pm2mpval.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 pm2mpval.b 𝐵 = ( Base ‘ 𝐶 )
4 pm2mpval.m = ( ·𝑠𝑄 )
5 pm2mpval.e = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
6 pm2mpval.x 𝑋 = ( var1𝐴 )
7 pm2mpval.a 𝐴 = ( 𝑁 Mat 𝑅 )
8 pm2mpval.q 𝑄 = ( Poly1𝐴 )
9 pm2mpval.t 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 )
10 simpll ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀𝐵𝐾 ∈ ℕ0 ) ) → 𝑁 ∈ Fin )
11 simplr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀𝐵𝐾 ∈ ℕ0 ) ) → 𝑅 ∈ Ring )
12 simprl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀𝐵𝐾 ∈ ℕ0 ) ) → 𝑀𝐵 )
13 1 2 3 4 5 6 7 8 9 pm2mpfval ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 𝑇𝑀 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) ) )
14 10 11 12 13 syl3anc ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀𝐵𝐾 ∈ ℕ0 ) ) → ( 𝑇𝑀 ) = ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) ) )
15 14 fveq2d ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀𝐵𝐾 ∈ ℕ0 ) ) → ( coe1 ‘ ( 𝑇𝑀 ) ) = ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) ) ) )
16 15 fveq1d ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀𝐵𝐾 ∈ ℕ0 ) ) → ( ( coe1 ‘ ( 𝑇𝑀 ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) ) ) ‘ 𝐾 ) )
17 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
18 7 matring ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring )
19 18 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀𝐵𝐾 ∈ ℕ0 ) ) → 𝐴 ∈ Ring )
20 eqid ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 )
21 eqid ( 0g𝐴 ) = ( 0g𝐴 )
22 11 adantr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀𝐵𝐾 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring )
23 12 adantr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀𝐵𝐾 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑀𝐵 )
24 simpr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀𝐵𝐾 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 )
25 1 2 3 7 20 decpmatcl ( ( 𝑅 ∈ Ring ∧ 𝑀𝐵𝑘 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) )
26 22 23 24 25 syl3anc ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀𝐵𝐾 ∈ ℕ0 ) ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑀 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) )
27 26 ralrimiva ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀𝐵𝐾 ∈ ℕ0 ) ) → ∀ 𝑘 ∈ ℕ0 ( 𝑀 decompPMat 𝑘 ) ∈ ( Base ‘ 𝐴 ) )
28 1 2 3 7 21 decpmatfsupp ( ( 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑀 decompPMat 𝑘 ) ) finSupp ( 0g𝐴 ) )
29 28 ad2ant2lr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀𝐵𝐾 ∈ ℕ0 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑀 decompPMat 𝑘 ) ) finSupp ( 0g𝐴 ) )
30 simpr ( ( 𝑀𝐵𝐾 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 )
31 30 adantl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀𝐵𝐾 ∈ ℕ0 ) ) → 𝐾 ∈ ℕ0 )
32 8 17 6 5 19 20 4 21 27 29 31 gsummoncoe1 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀𝐵𝐾 ∈ ℕ0 ) ) → ( ( coe1 ‘ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑀 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) ) ) ‘ 𝐾 ) = 𝐾 / 𝑘 ( 𝑀 decompPMat 𝑘 ) )
33 csbov2g ( 𝐾 ∈ ℕ0 𝐾 / 𝑘 ( 𝑀 decompPMat 𝑘 ) = ( 𝑀 decompPMat 𝐾 / 𝑘 𝑘 ) )
34 csbvarg ( 𝐾 ∈ ℕ0 𝐾 / 𝑘 𝑘 = 𝐾 )
35 34 oveq2d ( 𝐾 ∈ ℕ0 → ( 𝑀 decompPMat 𝐾 / 𝑘 𝑘 ) = ( 𝑀 decompPMat 𝐾 ) )
36 33 35 eqtrd ( 𝐾 ∈ ℕ0 𝐾 / 𝑘 ( 𝑀 decompPMat 𝑘 ) = ( 𝑀 decompPMat 𝐾 ) )
37 36 adantl ( ( 𝑀𝐵𝐾 ∈ ℕ0 ) → 𝐾 / 𝑘 ( 𝑀 decompPMat 𝑘 ) = ( 𝑀 decompPMat 𝐾 ) )
38 37 adantl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀𝐵𝐾 ∈ ℕ0 ) ) → 𝐾 / 𝑘 ( 𝑀 decompPMat 𝑘 ) = ( 𝑀 decompPMat 𝐾 ) )
39 16 32 38 3eqtrd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ ( 𝑀𝐵𝐾 ∈ ℕ0 ) ) → ( ( coe1 ‘ ( 𝑇𝑀 ) ) ‘ 𝐾 ) = ( 𝑀 decompPMat 𝐾 ) )