Metamath Proof Explorer


Theorem pm2mpf

Description: The transformation of polynomial matrices into polynomials over matrices is a function mapping polynomial matrices to polynomials over matrices. (Contributed by AV, 5-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses pm2mpval.p 𝑃 = ( Poly1𝑅 )
pm2mpval.c 𝐶 = ( 𝑁 Mat 𝑃 )
pm2mpval.b 𝐵 = ( Base ‘ 𝐶 )
pm2mpval.m = ( ·𝑠𝑄 )
pm2mpval.e = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
pm2mpval.x 𝑋 = ( var1𝐴 )
pm2mpval.a 𝐴 = ( 𝑁 Mat 𝑅 )
pm2mpval.q 𝑄 = ( Poly1𝐴 )
pm2mpval.t 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 )
pm2mpcl.l 𝐿 = ( Base ‘ 𝑄 )
Assertion pm2mpf ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵𝐿 )

Proof

Step Hyp Ref Expression
1 pm2mpval.p 𝑃 = ( Poly1𝑅 )
2 pm2mpval.c 𝐶 = ( 𝑁 Mat 𝑃 )
3 pm2mpval.b 𝐵 = ( Base ‘ 𝐶 )
4 pm2mpval.m = ( ·𝑠𝑄 )
5 pm2mpval.e = ( .g ‘ ( mulGrp ‘ 𝑄 ) )
6 pm2mpval.x 𝑋 = ( var1𝐴 )
7 pm2mpval.a 𝐴 = ( 𝑁 Mat 𝑅 )
8 pm2mpval.q 𝑄 = ( Poly1𝐴 )
9 pm2mpval.t 𝑇 = ( 𝑁 pMatToMatPoly 𝑅 )
10 pm2mpcl.l 𝐿 = ( Base ‘ 𝑄 )
11 ovexd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑚𝐵 ) → ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) ) ∈ V )
12 1 2 3 4 5 6 7 8 9 pm2mpval ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 = ( 𝑚𝐵 ↦ ( 𝑄 Σg ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑚 decompPMat 𝑘 ) ( 𝑘 𝑋 ) ) ) ) ) )
13 1 2 3 4 5 6 7 8 9 10 pm2mpcl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑏𝐵 ) → ( 𝑇𝑏 ) ∈ 𝐿 )
14 13 3expa ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ∧ 𝑏𝐵 ) → ( 𝑇𝑏 ) ∈ 𝐿 )
15 11 12 14 fmpt2d ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑇 : 𝐵𝐿 )